

Unidad de Evidencia y Deliberación para la toma de decisiones UNED

Risk of Bias for Epidemiological Studies

Last updated March 28th 2024

Risk of Bias assessments for included cross-sectional studies (1)	Baumgarte ¹ 2022 (2)	Gettings ² , 2021 (3)	Granzin ³ , 2023	Monge-Barrio ⁴ 2021(5)	Oginawati ⁵ , 2022(6)	Pokora ⁶ 2021(7)	Wessendorf, 2022 (8)
			Germany (4)				
1. Were the criteria for inclusion in the sample clearly defined?	NA	Y	N	U	Y	Ν	Y
2. Were the study subjects and the setting described in detail?	PY	PY	N	PY	Ν	PY	Y
3. Was the exposure measured in a valid and reliable way?	Ν	Ν	U	PY	U	Ν	N
4. Were objective, standard criteria used for measurement of the condition?	NA	NA	NA	Ν	Ν	NA	Y
5. Were the confounding factors identified?	Y	Ν	U	Ν	Ν	PY	Y
6. Were strategies to deal with confounding factors stated?	PY	Ν	N	Ν	Ν	Y	Y
7. Were the outcomes measured in a valid and reliable way?	Ν	Ν	Ν	Ν	Ν	Ν	Y
8. Was appropriate statistical analysis used?	Ν	Ν	N	Ν	PY	Y	Y
Total score	3/6	2/7	0/7	2/8	2/8	4/7	7/8 7

NA = not applicable; Y = yes; PY = partial yes; PN = partial no; N = no; U = unclear

Risk of bias: 0-2= Critical; 3-4= Serious; 5-6=Moderate; 7-8= Low

¹ considered at risk of bias for confounding and classification/measurement of intervention/exposure

² considered at risk of bias for confounding, selection of participants, measurement of exposures and outcomes

³ considered at risk of bias for confounding and potential selection and measurement bias

⁴ considered at risk of bias for measurement of outcomes and confounding was not examined

⁵ considered at risk of bias for confounding and potential selection and measurement bias

⁶ considered at risk of bias for confounding, selection of participants, measurement of exposures and outcomes

⁷ The main concern is the use of a survey to measure exposure since it is an instrument susceptible to information bias.

Risk of Bias assessments for included cohort studies (9)	Buonanno ⁸ , 2021 (10)	Cheng, 2022 (11)	Wang ⁹ , 2020
Bias due to confounding	2021 (10)	2022 (11)	(12)
Did the study adjust for other COVID protective interventions (including vaccination)?**	N	N	Y
Did the study adjust for calendar time (implications for circulating variant, season), demographics, and other relevant factors?**	Ν	Ν	Y
Were participants free of confirmed COVID infection at the start of the study?**	U	U	U
Bias in selection of participants			
Were both study groups recruited from the same population during the same time period?	Y	Ν	Y
Were the COVID protective interventions implemented prior to period of data collection? (prevalent users)	Y	Ν	Y
Were the study groups balanced with respect to participant adherence (based on internal and external factors unrelated to COVID)?	U	U	U
Bias in classification of interventions			
Was the method for confirming the intervention clearly defined and applied consistently across study samples (e.g., districts within a country)?	Y	Y	Ν
In periods of co-occurring interventions, do the authors clearly classify each individual intervention?	Ν	NA	Y
Does classification into intervention/control group depend on self-report in a way that might introduce bias?	Ν	Ν	Y
For household transmission studies, was it clear that exposure to the index case was the most likely the only exposure to COVID for household or close	NA	NA	Ν
contacts?			
Bias due to deviations from intended intervention	1		
Did the authors assess adherence to the protective behaviours/interventions after intervention implementation?**	NA	Ν	N
Risk of bias due to missing data			•
Was outcome data at the end of the study period available for all or nearly all participants?	U	Y	Y
Were participants excluded due to missing data?	N	Ν	U
Risk of bias in measurement of outcomes			
Was the outcome of COVID confirmed by laboratory testing?**	U	Υ	U
If the outcomes were derived from databases, were the databases constructed specifically for the collection of COVID data?**	Y	U	NA
Were appropriate tools/methods with validated/justified cut-points used to determine outcomes of interest (other than COVID infection/transmission	NA	NA	NA
which is covered under laboratory testing)? **			
If the outcome was self-reported, did the authors attempt to control for social desirability?**	U	NA	U
Was the frequency of testing for the outcome different between the study groups?	N	U	U
If outcome was observed, was there more than one assessor and if so, was interrater agreement reported?	NA	NA	U

NA = not applicable; Y = yes; PY = partial yes; PN = partial no; N = no; U = unclear

⁸ considered at risk of bias for confounding and measurement of outcomes

⁹ considered at risk of bias for measurement of exposure, and unclear for measurement of outcome

Risk of Bias assessments for included cohort studies (9)	Wang ¹⁰ , 2020 (12)	Miyake ¹¹ , 2020 (13)	Horve, 2022 ¹² (14)	Horve, 2022 ¹³ (14)	
Bias in selection of study participants:					
Were both study groups recruited from the same population during the same time period?	Moderate	Moderate	Moderate	Moderate	
Were the RIDs protective interventions implemented prior to the period of data collection? (Prevalent users)	No information	No information	No information	No information	
Were the study groups balanced with respect to participant adherence (based on internal and external factors unrelated to RIDs?	No information	No information	No information	No information	
Bias in classification of interventions:					
Was the method for confirming the intervention (e.g., type, setting, dose, frequency, intensity and/or timing of intervention) clearly defined and applied consistently across study samples (e.g., districts within a country)?	Low	Serious	Serious	Low	
In periods of co-occurring interventions, do the authors clearly classify each individual intervention?	Low	Serious	Low	Low	
Does classification into intervention/control group depend on self-report in a way that might introduce bias?	Moderate	Critical	Critical	Low	
For household transmission studies, was it clear that exposure to the index case was the most likely the only exposure to RIDs for household or close contacts?	Moderate	No information	No information	No information	
Bias due to confounding:					
Did the study adjust for calendar time (implications for circulating variant, season)?	Critical	Moderate	Moderate	Moderate	
Did the study adjust for demographics, prognostic factors and other relevant factors?	Serious	Serious	Moderate	Moderate	
Did the study adjust for other RIDs protective interventions (including vaccination)?	Serious	Serious	No information	No information	
Were participants free of confirmed RIDs infection at the start of the study?**	Serious	Serious Serious Low Low			
Bias in measurement of outcomes:					
Was the outcome of RIDs confirmed by laboratory testing?	Serious	Critical	Low	Low	
If the outcomes were derived from databases, were the databases constructed specifically for the collection of RIDs data?	No information	No information	Low	Low	
Were appropriate tools/methods with validated/justified cut-points used to determine outcomes of interest (other than RIDs infection/transmission which is covered under laboratory testing)?	Critical	Serious	Low	Low	
If the outcome was self-reported, did the authors attempt to control for social desirability?	Critical	Critical	Low	Low	
Was the frequency of testing for the outcome different between the study groups?	No information	Low	Low	Low	
If outcome was observed, was there more than one assessor and if so, was interrater agreement reported?	No information	No information	No information	No information	
Bias due to missing data:					
Was outcome data at the end of the study period available for all or nearly all participants?	Low	No information	Low	Low	
Were participants excluded due to missing data?	Low	No information	Low	Low	
Bias due to deviations from intended intervention:					
Did the authors assess adherence to the protective behaviours/interventions after intervention implementation?	Serious	Serious	Serious	Low	
OVERALL	Critical 14	Critical ¹⁵	Critical ¹⁶	Moderate ¹⁷	

¹⁰ Participants were recruited from the same city during the same time period of the pandemic. The study relied on self-report for some aspects, such as mask-wearing and disinfection practices within households. The study does not explicitly address the potential for high-risk occupational and social exposures outside of the household setting prior to index case identification. It does not explicitly mention any adjustment for calendar time, demographics, prognostic factors such as socioeconomic status, occupation, or use of other public health and social measures (PHSMs). The study does not explicitly state that all participants underwent laboratory testing. The study relies on telephone interviews, and no mention of efforts to control for social desirability bias.. The study relies on self-reported data through telephone interviews for evaluating the effectiveness of hygiene measures without explicitly verifying adherence to these protective behaviors/interventions.

¹¹ The participants were quite homogeneous, and the study was conducted during the coldest seasons. Lack of clear classification and detail on how each intervention was handled. Reliance on self-report for classifying individuals into intervention or control groups, without addressing how this potential bias was controlled for. The study adjusted for influenza vaccination; it does not mention controlling for other potential RIDs protective interventions. The validity of the questionnaires used in the present study is unknown. The study does not explicitly mention whether participants were free of confirmed RIDs infection at the start of the study. Outcomes solely dependent on self-report without a validated measure. The study does not mention any attempts to control for social desirability bias and does not mention any verification of adherence to the protective behaviours/interventions.

¹² Opening Windows. The status of the windows was taken from a questionnaire (self-report). Citations and mention that symptom and window position results are largely based on self-reported survey data, which may suffer from inconsistencies and misclassification bias. The mention of demographics suggests some level of consideration for confounding factors, but the lack of detail on adjustments for other known important domains indicates a moderate risk.

¹³ Intervention evaluation: different air change rates (ACH). The frequency and degree of window opening was self-reported, making it susceptible to information bias in adherence to this intervention

¹⁴ Given that the study is judged to be at a serious risk of bias in at least one domain (bias due to deviations from intended intervention), the overall risk of bias for the study is rated as critical.

¹⁵ This study was susceptible to several biases in the measurement of the intervention, confounding factors, and outcomes, so global risk assessment is critical.

¹⁶ Given that the study is judged to be at a serious risk of bias in at least one domain (risk of bias in the measurement through self-report of the window opening intervention), the overall risk of bias for the study is rated as critical.

¹⁷ Given that the study is judged to be at a moderate risk of bias in at least one domain (measurement and control of confounding factors), the overall risk of bias for the study is rated as moderate.

Risk of Bias assessments for included case-control studies (1)	Nabirova, 2022 (15)	Yang, 2021 (16)
1. Were the groups comparable other than the presence of disease in cases or the absence of disease in controls?	PY	Y
2. Were cases and controls matched appropriately?	Y	Ν
3. Were the same criteria used for identification of cases and controls?	Y	Y
4. Was exposure measured in a standard, valid and reliable way?	U	Y
5. Was exposure measured in the same way for cases and controls?	Y	Y
6. Were the confounding factors identified?	Υ	U
7. Were strategies to deal with confounding factors stated?	Y	Y
8. Were outcomes assessed in a standard, valid and reliable way for cases and controls?	Y	Ν
9. Was the exposure period of interest long enough to be meaningful?	Y	Y
10. Was appropriate statistical analysis used?	Y	Y
Total score	9/10 ¹⁸	7/10 ¹⁹

NA = not applicable; Y = yes; N = no; U = unclear

Risk of bias: 0-2= Critical; 3-4= Serious; 5-7=Moderate; 8-10= Low

¹⁸ Considered at unclear risk of bias for measurement of exposure

¹⁹ The main concern is due to the method of measuring the outcome, which was a survey and from this the comparison groups were defined. The comparators in this study were the "case" and "control" bedrooms, differentiated by the incidence of respiratory infections among their occupants. "Case" dormitories had at least one occupant reporting an annual infection incidence ≥ 6 -times, while "control" dormitories had all occupants with an annual infection incidence ≤ 6 -times. Some confounding factors were measured through the survey, but other relevant ones such as vaccination or time spent in the rooms

Risk of Bias assessments for included quasi-experimental studies (1)	Falkenberg, 2023 (17)				
Is it clear in the study what is the 'cause' and what is the 'effect' (i.e. there is no confusion about which variable comes first)?	Y				
Were the participants included in any comparisons similar?	Y				
Were the participants included in any comparisons receiving similar treatment/care, other than the exposure or intervention of interest?	N				
Was there a control group?	Y				
Were there multiple measurements of the outcome both pre and post the intervention/exposure?					
Was follow up complete and if not, were differences between groups in terms of their follow up adequately described and analyzed?					
Were the outcomes of participants included in any comparisons measured in the same way?					
Were outcomes measured in a reliable way?					
Was appropriate statistical analysis used?	Y				
Total score	6/9 ²⁰				

NA = not applicable; Y = yes; N = no; U = unclear

Risk of bias: 0-2= Critical; 3-4= Serious; 5-7=Moderate; 8-9= Low

²⁰ The main concern arises that participants in the comparisons were not receiving similar treatment/care, other than the exposure or intervention of interest (HEPA filters). This discrepancy could introduce confounding variables, affecting the study's ability to isolate the effect of HEPA filters on COVID-19 transmission rates. If kindergartens implemented various additional preventive measures (e.g., mask use, ventilation practices, surface decontamination) inconsistently between the intervention and control groups, these differences could influence the outcome regardless of the filters. HEPA. Such variations in treatment/care could potentially bias results, making it difficult to attribute changes in COVID-19 transmission rates directly to the use of HEPA filters.

Risk of Bias assessments for included randomized crossover trials studies (18)					
Domain 1a: Risk of bias arising from the randomization process					
Signalling questions	Response options				
1.1 Was the allocation sequence random?	<u>Y/PY</u> /PN/N/NI	Y			
1.2 Was the allocation sequence concealed until participants were enrolled and assigned to interventions?	<u>Y/PY</u> /PN/N/NI	Y			
1.3 Did baseline differences between intervention groups at the start of the first period suggest a problem with the randomization process?	Y/PY/ <u>PN/N</u> /NI	Y			
Risk-of-bias judgement	Low / High / Some concerns	Some concerns			
Domain S: Risk of bias arising from period and carryover effects					
Signalling questions	Response options				
S.1 Was the number of participants allocated to each of the two sequences equal or nearly equal?	<u>Y/PY</u> /PN/N/NI	Y			
S.2 If N/PN/NI to S.1: Were period effects accounted for in the analysis?	NA/ <u>Y/PY</u> /PN/N/NI	NA			
S.3 Was there sufficient time for any carryover effects to have disappeared before outcome assessment in the second period?	<u>Y/PY</u> /PN/N/NI	Ν			
Risk-of-bias judgement	Low / High / Some concerns	Some concerns			
Domain 2: Risk of bias due to deviations from the intended interventions (effect of assignme	nt to intervention)				
Signalling questions	Response options				
2.1. Were participants aware of their assigned intervention during each period of the trial?	Y/PY/ <u>PN/N</u> /NI	Ν			
2.2. Were carers and people delivering the interventions aware of participants' assigned intervention during each period of the trial?	Y/PY/ <u>PN/N</u> /NI	PN			
2.3. If Y/PY/NI to 2.1 or 2.2: Were there deviations from the intended intervention that arose because of the trial context?	NA/ <mark>Y/PY/<u>PN/N</u>/NI</mark>	NA			
2.4 If Y/PY to 2.3: Were these deviations likely to have affected the outcome?	NA/ <mark>Y/PY/<u>PN/N</u>/NI</mark>	NA			
2.5. If Y/PY/NI to 2.4: Were these deviations from intended intervention balanced between groups?	NA/ <u>Y/PY</u> /PN/N/NI	NA			
2.6 Was an appropriate analysis used to estimate the effect of assignment to intervention?	<u>Y/PY</u> /PN/N/NI	PN			
2.7 If N/PN/NI to 2.6: Was there potential for a substantial impact (on the result) of the failure to analyse participants in the group to which	NA/ <mark>Y/PY/<u>PN/N</u>/NI</mark>	Y			
they were randomized?					
Risk-of-bias judgement	Low / High / Some concerns	High			
Domain 3: Risk of bias due to missing outcome data	1				
Signalling questions	Response options				
3.1 Were data for this outcome available for all, or nearly all, participants randomized?	<u>Y/PY</u> /PN/N/NI	N			
3.2 If <u>N/PN/NI to 3.1</u> : Is there evidence that the result was not biased by missing outcome data?	NA/ <u>Y/PY</u> /PN/N	N			
3.3 If <u>N/PN to 3.2</u> Could missingness in the outcome depend on its true value?	NA/ <mark>Y/PY/<u>PN/N</u>/NI</mark>	PY			
3.4 If Y/PY/NI to 3.3: Is it likely that missingness in the outcome depended on its true value?	NA/ <mark>Y/PY/<u>PN/N</u>/NI</mark>	NI			
Risk-of-bias judgement	Low / High / Some concerns	High			
Domain 4: Risk of bias in measurement of the outcome					
Signalling questions	Response options				
4.1 Was the method of measuring the outcome inappropriate?	Y/PY/ <u>PN/N</u> /NI	PN			
4.2 Could measurement or ascertainment of the outcome have differed between interventions within each sequence?	Y/PY/ <u>PN/N</u> /NI	PN			
4.3 If N/PN/NI to 4.1 and 4.2: Were outcome assessors aware of the intervention received by study participants?	NA/ <mark>Y/PY/<u>PN/N</u>/NI</mark>	РҮ			
4.4 If Y/PY/NI to 4.3: Could assessment of the outcome have been influenced by knowledge of intervention received?	NA/ <mark>Y/P</mark> Y/ <u>PN/N</u> /NI	Ν			
4.5 If Y/PY/NI to 4.4: Is it likely that assessment of the outcome was influenced by knowledge of intervention received?	NA/ <mark>Y/PY/<u>PN/N</u>/NI</mark>	PN			
Risk-of-bias judgement	Low / High / Some concerns	Low			
Domain 5: Risk of bias in selection of the reported result					
Signalling questions	Response options				
5.1 Were the data that produced this result analyzed in accordance with a pre-specified analysis plan that was finalized before unblinded	<u>Y/PY</u> /PN/N/NI	NI			
outcome data were available for analysis?					

Is the numerical result being assessed likely to have been selected, on the basis of the results, from	Y/PY/ <u>PN/N</u> /NI	PN				
5.2. multiple eligible outcome measurements (e.g. scales, definitions, time points) within the outcome domain?						
5.3 multiple eligible analyses of the data?	Y/PY/ <u>PN/N</u> /NI	PN				
5.4 Is a result based on data from both periods sought, but unavailable on the basis of carryover having been identified?	Y/PY/ <u>PN/N</u> /NI	РҮ				
Risk-of-bias judgement	Low / High / Some concerns	High				
Overall risk of bias						
Risk-of-bias judgement	Low / High / Some concerns	High ²¹				

NA = not applicable; Y = yes; PY = partial yes; PN = partial no; N = no; NI= No information

²¹ The study is judged to be at high risk of bias in at least one domain for this result. In this study, the main concerns are about the very small sample size, the reporting of an imputed case, multiple uncontrolled confounding factors and no statistical adjustment, data with which the new period begins is not reported, the results are grouped and there is no washing time.

Modelling Studies: Adequacy of the model, applicability and transparency in reporting

Last updated March 28th 2024

Study	Description of the population and the interventions is	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	complete and	wpproprime				
A 1			· · · · · · · · · · · · · · · · · · ·		271 1. 1 1	M. 1
Aganovic et al., 2022 (20)	The description of the population and the interventions evaluated in the study appears to be indirectly provided through the focus on indoor environments and the assessment of different ventilation systems' impact on the airborne transmission risk of SARS- CoV-2. However, specific details about the population, such as the number of individuals, their health status, or behaviors that might affect transmission risk, are not explicitly mentioned. This omission is understandable given the study's primary focus on environmental factors and theoretical modeling rather than on direct human subjects.	The description of the model used in the study appears to be complete and appropriate. The authors have detailed the extension of the Wells-Riley model to account for different ventilation systems and their impact on airborne infection risk. They have introduced a zonal modeling approach that divides enclosed spaces into zones with uniform mixed air, which is a significant adaptation from the traditional Wells-Riley model that assumes well-mixed room air.	The authors have published the assumptions of their model, acknowledging the limitations inherent in their approach. They explicitly state that their model applies only to long-distance airborne transmission of SARS-CoV-2, excluding short-range transmission. Additionally, they note the omission of convective flows within the space caused by thermal sources, such as human thermal plumes, which could affect the flow field.	The study provides the formulas associated with the model, detailing the differential equations for the change in quanta concentrations in different zones of the ventilation systems.	The results and conclusions presented by the authors are consistent with the methodology and the assumptions of their model. They have utilized the developed zonal model to demonstrate the impact of different airflow distribution methods on infection risk, which aligns with their objective to provide a more accurate assessment of airborne infection risk in environments with advanced ventilation systems.	Moderate
Aganovic et al., 2022 (21)	While the methodology employed in the study is sound for assessing the impact of humidity and ventilation on airborne virus transmission, the description of the population and interventions could be improved by providing more detailed information on the study conditions.	The description of the model used in the study appears to be complete and appropriate for assessing the impact of indoor relative humidity (RH) and ventilation rates on the infection risk of various respiratory airborne viruses. The study employs a modified Wells-Riley (WR) model that incorporates additional removal mechanisms such as gravitational settling, virus inactivation, and respiratory tract absorption, beyond the	The authors have clearly published the assumptions underlying their model. These include the constant emission rate of virus quanta from an infected individual, the consideration of four removal mechanisms (ventilation, virus inactivation, deposition by gravitational settling, and respiratory absorption), and the impact of RH on these mechanisms.	The study provides detailed formulas for calculating the deposition rate of virus-laden droplets, the gravitational settling velocity, and the total deposition number as a function of droplet diameter and tidal volume size. Some formulas are detailed in the supplementary material to which you have access.	The results and conclusions presented by the authors seem consistent with the methodology and analyses employed in the study. They demonstrate how varying RH and ventilation rates can significantly impact the infection risk for different viruses, with the effect of RH being dependent on the virus type, exposure time, and ventilation rate. The study's conclusions are supported by the model's outcomes,	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
		conventional ventilation removal mechanism.			indicating a robust analytical	
Aganovic et al., 2021 (22)	While the study focuses on a classroom setting for its simulations, there is no detailed information about the specific characteristics of the population involved, such as age, health status, or density of individuals in the room. The interventions evaluated, namely changes in ventilation rates and relative humidity levels, are adequately described in terms of their potential impact on infection risk.	The description of the model used in the study is comprehensive and appropriate for evaluating airborne transmission dynamics of infectious diseases in confined spaces. The model is based on the Wells-Riley model. It incorporates the concept of 'quantum of infection' and considers both source and sink terms, including steady- state quanta generation and removal by ventilation. Modifications to incorporate non-steady-state quanta levels and additional removal mechanisms like biological decay and deposition loss have been discussed.	The study has published several key assumptions of the model. These include the assumption of well- mixed room air, steady-state quanta generation, and constant ventilation rate for quanta removal. It also acknowledges the limitations of these assumptions, such as the immediate dilution of expelled virus concentration and the challenge of achieving complete mixing within a space.	The study provides formulas related to the model, such as the expression for the deposition rate of virus-laden droplets. However, the detailed mathematical framework encompassing all aspects of the modified Wells-Riley model, including non-steady-state conditions and additional removal mechanisms, is not fully described in the provided excerpts.	The study acknowledges limitations related to the assumptions of well-mixed air and immediate dilution of expelled virus concentration, which could affect the accuracy of the model's predictions. Despite these limitations, the study's use of the Wells-Riley model and its modifications for evaluating airborne transmission risks in indoor environments is consistent with established practices in the field.	Moderate
Arpino et al., 2022 (23)	The description of the population and the interventions evaluated in the study appears to be adequately detailed for the purpose of assessing the risk of SARS-CoV-2 Delta variant transmission in car cabins. However, the summary does not specify the demographic characteristics of the population (e.g., age, health status) which could influence susceptibility to infection and might be relevant for a more detailed risk assessment. The interventions evaluated, particularly the	The description of the model used in the study is comprehensive and appropriate for the objectives set forth. The authors employed a transient non- isothermal 3D Eulerian- Lagrangian numerical model, which was developed and validated in previous research, to describe particle spread once emitted by an infected speaking/breathing passenger located in a car cabin compartment. This model is based on the open-source OpenFOAM software, allowing for a fully open and flexible tool with complete control of the variables	The study clearly outlines several assumptions made within the model. For instance, particle collisions were considered elastic, and the effect of the particles on the airflow was deemed negligible, assuming a one- way coupling between the continuum phase and the discrete phase. Additionally, the simulations assumed winter climatic conditions, with specific temperatures set for the car windows, inlet air, and passenger face temperatures. It was also assumed that people in the car cabin would wear winter clothes, and thus, the body	The summary does not provide explicit details on the specific formulas associated with the model, such as the governing Partial Differential Equations (PDEs) for airflow, pressure, and temperature fields, or the equations for particle motion. However, it mentions that the airflow (continuous phase) and Newton's equation of motion for each particle (discrete phase) were solved, and turbulence was modeled using the Unsteady Reynolds Averaged Navier Stokes (URANS) approach with the Shear Stress Transport (SST) k– ω model. While the exact formulas are not detailed, references to the scientific literature and previous research activities that validated these approaches are provided, suggesting	The results and conclusions drawn by the authors seem consistent with the objectives and methodology of the study. The results, including the distribution of secondary cases and the probability of infection under different scenarios, were consistent with the model's capabilities and assumptions. The authors also acknowledged the limitations and specific conditions of their study, such as the exclusion of mitigation measures like masks and vaccination, and the unique configuration of the car cabin used in their simulations.	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	different ventilation modes and airflow rates, are well- chosen as they represent practical measures that can be manipulated in real- world scenarios to mitigate the risk of airborne transmission of viruses. The inclusion of different expiratory activities (breathing and speaking) as variables also adds to the study's relevance.	employed for particle dispersion assessment. The model incorporates various influence parameters such as the position of the infected subject within the car cabin, airflow rate of the HVAC system, HVAC ventilation mode, and expiratory activity.	temperature plume was neglected.	that these foundational aspects of the model are well-established in the field.		
Azimi, 2020(24)	The population under study is clearly defined as students in various U.S. school settings, with considerations for factors such as age and vaccination status. The interventions evaluated, are well-chosen as they represent practical measures that can be implemented in school environments to reduce the risk of measles transmission.	The description of the model used in the study is both complete and appropriate. The authors developed a nationwide representative School Building Archetype (SBA) model combined with a transient multi-zone Wells- Riley model to estimate the transmission risk of measles in U.S. schools. The methodology incorporates back-calculation of quanta generation rates from actual epidemiological studies and considers the variability in school settings and HVAC systems across the nation.	The study published its assumptions, including simplifications made in developing the transient Wells-Riley model, such as assuming continuous stay of students in microenvironments, constant number of students, and a simplified format of student interactions.	The study provides the formula used to define infection risk. Detailed mathematical expressions and specific derivations of the Wells-Riley multizone transient approach and the process for calculating quanta generation rates are provided in the supplementary material.	The results and conclusions of the authors appear to be consistent with the methodology and objectives of the study. The combination of the SBA and transient multi-zone Wells- Riley models estimates the nationwide infection risk of measles within the range of first-generation transmission rates of measles in schools, as per existing epidemiological studies.	High
Barone, 2022 (25)	The description of the population and the interventions to be evaluated, is not explicitly detailed. While the methodology for assessing both energy performance and infection risk is well outlined, there is a lack of specific information regarding the characteristics of the	The description of the model used for assessing both the train energy performance and the probability of infection among passengers appears to be complete and appropriate. The methodology integrates a detailed simulation model managed by a Matlab script, which handles inputs and outputs related to the railway coach energy simulation and	The Wells-Riley model application is mentioned, and some parameters are listed, but specific assumptions regarding passenger behavior, mask usage rate, or ventilation effectiveness are not fully elaborated.	The formulas associated with both the energy consumption and the Covid-19 contagion risk assessment are published and described.	The results and conclusions of the authors appear to be consistent with the methodology and objectives outlined in their study. The study's outcomes underline the necessity of updating ventilation standards in enclosed spaces, highlighting the balance between reducing CO2 concentration and Covid-19 contagion risk	Moderate

Study	Description of the population and the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	complete and appropriate	арргорпасе				
	population (e.g., number of passengers, demographics) and the precise interventions (e.g., specific ventilation rates, filtration systems) being evaluated. The case study mentioned involves a high- capacity double-deck train carriage operating on regional bases, but further details on the interventions and the population characteristics within this context are not provided.	the infection risk calculation model. The energy simulation is based on the coupling of Building Information Modelling (BIM) software with a dynamic energy simulation tool. For the contagion risk assessment, the Wells-Riley infection model is applied.			against the backdrop of increased energy consumption. The recommendation to adopt heat recovery devices to mitigate the energy and economic implications further aligns with the study's comprehensive approach to addressing both IAQ and energy efficiency in the context of the Covid-19 pandemic.	
Cai et al., 2022	The population under study is clearly defined as over 100,000 public and private schools across the U.S., providing a broad and representative sample for assessing the impact of COVID-19 mitigation strategies on energy costs. The inclusion of both public and private schools allows for a comparison of costs across different types of educational institutions, which is valuable for stakeholders and policymakers. The interventions evaluated, including improved ventilation, air filtration, and partial online learning, are relevant and practical measures for reducing airborne infection risks in schools. locations.	The description of the model used in the study appears to be both complete and appropriate for the objectives of the research. The methodology encompasses a comprehensive approach, including epidemiological scenario generation, energy consumption estimation of school HVAC systems, infection risk modeling, and energy cost modeling. The study also considers the impact of climate change on energy costs, which adds depth to the analysis. The use of EnergyPlus for building energy simulation and the division of the U.S. into 16 climate zones for building energy simulation are particularly noteworthy, indicating a detailed and tailored approach to modeling.	The authors have published several key assumptions of their model. These include the use of electricity for indoor cooling and fan operation, natural gas for heating, the simplification of schools as one-story buildings, and the viral load in sputum for infection risk modeling. Additionally, the study assumes a well-mixed condition within the school environment for the estimation of indoor airborne transmission. While these assumptions are critical for the model's development and application, it's unclear if all assumptions have been disclosed, especially those related to the epidemiological aspects and specific HVAC system characteristics.	The study has published key formulas associated with the model, particularly for infection risk modeling and energy cost estimation. The formula for calculating the infection risk based on viral load, conversion factor, pulmonary ventilation rate, and droplet concentration is provided. Additionally, the methodology for estimating energy costs, which involves calculating energy consumption and then combining this with local utility prices, is outlined. These formulas are essential for replicating the study's findings and understanding the basis of the model's predictions.	The results and conclusions presented by the authors appear to be consistent with the objectives and findings of their study. The authors have effectively demonstrated the relationship between energy costs and health outcomes under different scenarios, including the impacts of air filtration and online learning on energy costs. The study's limitations are acknowledged, including the simplification of schools as one-story buildings and the assumption of a well- mixed condition within the school environment for the estimation.	Moderate
Clements et al.,	The description of the	The description of the model	The studies acknowledge	The article provides specific formulas	The results and conclusions	High
2023 (26)	population and the	used across the cited studies	and publish the assumptions	associated with the model, such as the	presented in the studies are	

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interventions evaluated appears to be adequately detailed for the purpose of the study.	appears to be complete and appropriate for the objectives of the research. The studies detail the use of a tracer-scaled bulk aerosol Quantitative Microbial Risk Assessment (QMRA) model, incorporating parameters for pathogen emission, risk, tracer emission, and tracer-scaled pathogen dose and risk models. Monte Carlo simulation is employed for model evaluation and sensitivity analysis, indicating a comprehensive approach to understanding the dynamics of aerosolized pathogens in indoor environments.	of the model, including the limitations of treating aerosols as a bulk substance and the potential discrepancies in bulk aerosol removal estimates due to differential removal of larger aerosol particles. Assumptions regarding the transport of respiratory aerosols being consistent with tracer transport and the use of impulse modes of respiratory emission are also disclosed.	equation modeling the concentration of aerosolized pathogens from a cough or sneeze in a perfectly mixed room and the relative risk (RR) comparison formula.	consistent with the methodologies and objectives outlined. The use of DNA tracer decay testing to evaluate the effectiveness of a HEPA air cleaner, and the scenario testing to assess the impact of interventions like ventilation and masking, lead to conclusions that are logically derived from the data and analyses conducted. The acknowledgment of the model's limitations and the potential for more complex modeling schemes to improve accuracy further supports the consistency and reliability of the authors' conclusions.	
Corzo et al., 2022 (27)	The study does not explicitly detail the population characteristics within the bus, such as the number of passengers, their distribution, or potential sources of virus emission (e.g., coughing or talking passengers). Understanding that the primary focus is on the environmental conditions and their impact on virus transmission, the lack of specific population details might be considered adequate for the study's computational and analytical modeling approach. However, incorporating more detailed passenger scenarios could enhance	The description of the model used in the study is both complete and appropriate for the objectives set by the authors. The model incorporates various scenarios, including different states of window openness and HVAC operation modes, to simulate the ventilation and virus propagation in an urban bus. The scenarios are clearly defined as Case 1 (all windows closed and HVAC off), Case 2 (all windows closed and HVAC on with full air recirculation), Case 3 (all windows closed and HVAC on with partial air recirculation), and Case 4 (six windows opened, HVAC off). The model also accounts for twenty seated occupants,	The study published several key assumptions of the model. It assumes a specific number of windows can be opened, providing a total opening area, and bases the effectiveness of window opening on previous studies. The model also assumes a specific breathing cycle for the occupants and employs a unique tracer variable for each emitter to track the virus transmission.	The study provides formulas associated with the model, particularly in the context of risk estimation and the tracking of virus transmission. For instance, it mentions the use of a zero- dimensional Wells–Riley (0D WR) model for risk estimation and outlines the formula for calculating the average concentrations of tracer at the inlet and outlet vents, considering the recirculation ratio and the efficiency of the filters. However, while some formulas are mentioned, the detailed mathematical framework of the 0D WR model and its application to the different scenarios could be more explicitly detailed to enhance the clarity of the methodology.	The results and conclusions presented by the authors are consistent with the objectives and methodology of the study. The study aimed to investigate the impact of different ventilation strategies on virus propagation in an urban bus, employing computational fluid dynamics (CFD) simulations and the Wells–Riley model for risk estimation. The authors concluded that while opening windows ensured negligible transmission risk, it might not always be feasible under extreme weather conditions. The study also highlighted the discrepancy between the 0D Wells–Riley model estimations and CFD results	Moderate

Study	Description of the population and the interventions is complete and	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	appropriate the realism and applicability of the findings. The interventions evaluated in the study are well-defined and relevant to public health guidelines and practical measures that can be implemented in public transportation settings.	including the driver and nineteen commuters, adhering to capacity restrictions imposed by the government, and specifies the location of ten emitters among the passengers.			in cases of motionless airflow and open windows, indicating higher local risks than average ones in these scenarios.	
Cotman et al., 2021 (28)	The study specifically focuses on office buildings and social gatherings. The inclusion of various factors such as air changes per hour, population size, residence time, and the specifics of HVAC system performance (filtration efficiency, UV filtration, and in-room filtration units) provides a comprehensive framework for evaluating the impact of different interventions. However, the study could enhance its description by providing more details about the demographic characteristics of the population (e.g., age, health status) and their behavior (e.g., compliance with mask-wearing, social distancing) as these factors can significantly influence transmission dynamics. Additionally, while the interventions evaluated are relevant and important, the	The description of the model used in the study is comprehensive and appropriate for the objective of simulating SARS-CoV-2 transmission via HVAC systems in indoor environments. The model incorporates key parameters such as particle size, infectious dose, and probit slope for dose-response, which are critical for assessing the risk of infection. It also includes detailed HVAC system parameters like air changes per hour (ACH), fraction of outside air (FOA), and filter efficiency, alongside the effects of ultraviolet light (UVC) decontamination and portable in-room filtration units. The use of Monte Carlo sampling to model individual group behaviors and the probit dose-response model for calculating infection probabilities further adds to the model's robustness.	The study outlines several assumptions inherent in the model, such as the use of SARS-CoV-1 median infectious dose as a surrogate for SARS-CoV-2, and the probit model slope derived from SARS-CoV-1 data. It also assumes a continuous point source of aerosol generation by an infected emitter and models aerosol transport with dependencies on particle size for filtration and settling rates. While these assumptions are critical for the model's operation, the study could potentially benefit from a more explicit discussion on the assumptions regarding human behavior and compliance with interventions, which are less clearly stated.	The study provides key formulas associated with the model, including the probit dose-response model. It also details the mechanics of aerosol transport, including generation, mixing, filtration, and biological decay.	The results and conclusions presented in the study appear to be consistent with the methodology and findings. The study effectively uses its model to evaluate the impact of various interventions on the transmission of SARS- CoV-2 in indoor environments, providing insights into the relative effectiveness of increasing air changes per hour (ACH), enhancing filtration efficiency, and augmenting the fraction of outside air (FOA) in reducing transmission rates. The study acknowledges that while these HVAC modifications can significantly mitigate the risk of SARS-CoV-2 transmission, they cannot reduce the risk to zero, especially in scenarios with high aerosol emission rates. This conclusion is supported by the detailed simulation results across different settings, including office buildings and social venues,	Moderate

Study	Description of the population and the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interventions is complete and	appropriate				
	appropriate					
	study could also consider the cumulative effect of combining multiple interventions simultaneously, as this would reflect more realistic mitigation strategies.				which consistently show that increasing ACH is the most impactful mitigation measure, particularly at low aerosol emission rates, with diminishing returns observed as interventions are tuned for mitigation.	
Das et al., 2023 (29)	The population in this context refers to the environmental conditions within passenger railcars, which are representative of public transportation settings. The interventions evaluated are well-chosen and relevant to the study's objectives. However, the study could be enhanced by providing more detailed information about the specific models of air purifiers used, the exact settings for air recirculation ratios, and how these interventions might be scaled or adapted in different types of passenger railcars or other public transportation settings. Additionally, information on the occupancy levels during the experiments and how they might affect aerosol concentrations and removal rates.	The description of the model used in the study appears to be both complete and appropriate for the objectives of the research. The study employed multilevel mixed- effects linear regression models with random intercepts to assess the impact of various engineering controls (damper position, filter type, and air purifier use) on aerosol removal rates under both static and dynamic conditions. This approach is suitable for analyzing the effects of different interventions on particle removal rates, considering the variability introduced by different experimental conditions and the inherent randomness in aerosol distribution and removal processes.	The authors published all the major assumptions of their model, which include the absence of prior infectious material in the car before the trip begins, the latent period of the disease being longer than the length of the model, the even distribution of infectious aerosols throughout the cabin volume, and the removal of infectious aerosols by a first-order process that includes ventilation, deposition, and viral inactivation. These assumptions are critical for understanding the context in which the model's results are valid and interpreting the findings accurately.	The study provided formulas associated with the model, such as the equation used to estimate particle removal rates when using a HEPA air purifier at different settings, and the equation to estimate the particle removal rates for different conditions based on the recirculation ratio, MERV filter rating, and the presence of an air purifier. These formulas are essential for replicating the study's findings and applying the model to similar scenarios in other research contexts.	The results and conclusions presented by the authors are consistent with the methodology and analysis described. The study found significant differences in aerosol removal rates based on the engineering control type used, with specific coefficients provided for different aerosol size ranges under both static and dynamic conditions. The study concluded that the use of a portable HEPA air purifier did not significantly affect removal rates, which is consistent with the results obtained from the mixed- effects linear regression model.	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
Das, 2021(30)	While the equation used for estimating health outcomes indicates a focus on the affected population and changes in air quality, specific details about the population characteristics (e.g., age, health status, location) or the precise nature of the interventions evaluated (beyond general references to changes in air quality and lockdown strategies) are not provided.	The description of the model used in the study appears to be complete and appropriate for the objectives of the research. The study employs a COVID airborne infection risk estimator model, which incorporates various input parameters such as volume, air changes per hour (ACH), mask efficiency for emission and intake, and dimensions of different vehicles like AC taxis, non-AC taxis, buses, and autorickshaws. The model also utilizes regression models for estimating ACH in different scenarios.	The study published the assumptions of the model, including the distributions and ranges used for each scenario. For instance, it specifies uniform distributions for ACH and mask efficiencies, and it provides the dimensions of vehicles and estimated air volumes, which are critical for calculating the air exchange rates and subsequently, the infection risks.	The study does not explicitly detail the formulas used within the COVID airborne infection risk estimator model in the provided excerpts. However, it references the use of an equation developed by Fann et al. (2012) for estimating annual adverse health outcomes, which is related to air quality changes but not directly to the COVID infection risk model.	The results indicate that AC taxis have a significantly higher probability of infection compared to non- AC taxis, buses, and autorickshaws, with the probability of infection decreasing as vehicle speed increases. These findings are consistent with the model's focus on air exchange rates and mask efficiencies as critical factors in infection risk. The conclusions drawn from these results, align with the model's parameters and the observed data.	Moderate
Dong et al., 2022 (31)	The population focus is on a kindergarten building. The interventions evaluated, namely the optimization of building openings' design parameters, are well- defined and relevant to the study's goals. However, the study could benefit from a more detailed description of the demographic characteristics of the population (e.g., age range of children, staff-to-child ratio) and how these might influence the generalizability of the findings.	The description of the model used in the study appears to be complete and appropriate. The authors have detailed the integration of the Wells-Riley model with Computational Fluid Dynamics (CFD) for the optimization of building design parameters to reduce indoor virus infection rates. They have utilized parametric programming techniques to interface these models with an evolutionary algorithm, aiming to optimize the geometric variables of building openings.	The study does publish some of the assumptions of the model, particularly regarding the simplification of variables used in the infection rate calculation. It acknowledges that in real- life situations, these variables are constantly changing dynamically, and for the purpose of the study, they have been simplified. This simplification is justified by the study's focus on exploring the changing trend of infection rates rather than determining precise infection. However, the study also mentions limitations related to not accounting for the specific activity trajectories of infected and exposed individuals due to the	The study mentions the use of the Wells-Riley equation, which is a fundamental part of their model integration for assessing virus infection rates. However, the specific formulas associated with the CFD model, the genetic algorithm, and how these are integrated with the Wells-Riley model are not detailed in the provided excerpts. While there is a mention of the operational models and the theoretical framework, the lack of explicit formulas or mathematical expressions in the provided text suggests that this aspect could be more comprehensively covered.	The study concludes with the potential of the approach introduced for optimizing building design to reduce indoor virus infection rates, acknowledging the shortcomings and areas for improvement. The authors have demonstrated the effectiveness of building design optimization through their model, which suggests a consistency in their results and conclusions. They acknowledge the limitations of current research models and propose their model as an advancement in linking geometric optimization with viral infection rate calculations.	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
			random nature of population activity, which could affect the experimental results.			
Farthing, 2021 (32)	The description of the population and the interventions to be evaluated appears to be adequately detailed. The population is based on a real-world event with 61 attendees, one of whom was symptomatic and likely led to 53 secondary infections. The interventions are clearly defined, with mask efficacy levels ranging from 0% to 90%, reflecting different types of masks and their expected performance.	The description of the model appears to be both complete and appropriate. The authors developed a spatially explicit, stochastic agent-based model (ABM) to simulate direct- droplet and airborne respiratory pathogen transmission in indoor settings. This model incorporates the dynamics of droplet size, diffusion, and decay, as well as the movement and positioning of individuals within a room. The use of the NetLogo modeling software and the detailed description provided in Supplemental Materials support the comprehensiveness.	The authors have published the assumptions of the model. They clearly state the use of the term "droplet" to refer to respiratory droplets of any size and describe the assumptions related to droplet dynamics, including expulsion, inhalation, fallout, diffusion, and decay. Additionally, the assumption that no individuals exceed pathogen latent or infectious periods due to the limited duration of simulations is explicitly mentioned.	Supplementary material details the formulas and equations associated with droplet dynamics, infection risk, and intervention effectiveness. In Supplement 1 there are equations that calculate the number of virions, the probability of infection, and the effect of population density. Supplement 2 explains how linear regression is performed to relate the percentage of susceptible infected individuals to virion risk.	The results and conclusions presented by the authors seem consistent with the methodology and analyses employed. They utilized a well-documented superspreading event as a case scenario to benchmark their model and assess the efficacy of various nonpharmaceutical interventions in reducing transmission risk. The use of 1,080,000 simulations and a beta regression model to estimate intervention effects supports the robustness of their findings. The conclusions drawn regarding the potential effectiveness of interventions like mask usage, increased airflow, and limiting contact durations are logically consistent with the model's design and the analyses conducted.	High
Faulkner, 2021(33)	The population in focus is the occupants of a medium office building. The interventions evaluated— different HVAC filtration strategies and the use of 100% outdoor air—are pertinent. However, the paper could enhance its methodology sortion by providing more	The description of the model used in the study appears to be both complete and appropriate. The model is divided into four sections: multizone airflow including virus generation and decay, the Variable Air Volume (VAV) system model, the control system, and weather conditions. The inclusion of	The study does publish its assumptions, particularly in the development of new models for HVAC filters and virus transmission. For instance, the HVAC filter model assumes a certain efficiency in virus removal and a static pressure drop depending on the mass flow rate and defined nominal flow conditions.	The study provides specific formulas associated with the model, particularly in the description of the HVAC filter model where the formula for virus concentration exiting the filter is given.	The results and conclusions of the authors seem consistent with the methodology employed and the assumptions made. The study's approach to modeling and its detailed analysis of HVAC operation strategies in reducing the risk of airborne virus transmission are well- supported by the developed models and the formulae	Moderate
	detailed demographic	rates, alongside the HVAC	Additionally, the virus		used.	

Study	Description of the population and the interventions is	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	complete and					
	information about the building occupants. Additionally, a more thorough explanation of the criteria for selecting the specific HVAC strategies for evaluation.	and control system models, ensures that the study can accurately simulate real-world scenarios. The use of Modelica for developing these models further supports the appropriateness of the methodology.	generation model assumes the presence of a "sick" person in each zone, with quanta emission rates based on literature.			
Feng, 2023(34)	The description of the population and the interventions evaluated in the study appears to be adequately detailed for the purpose of assessing COVID-19 transmission risks in UPT settings. The inclusion of different UPT modes (buses, subways, high-speed trains) and the consideration of various respiratory activities provide a comprehensive view of potential transmission scenarios. The interventions evaluated, including mask- wearing, ventilation improvements, and social distancing, are pertinent.	The description of the model used in the study appears to be complete and appropriate for evaluating short-range and room-scale risks in urban public transport (UPT) settings such as buses, subways, and high-speed trains. The methodology integrates field measurements with a COVID-19 risk assessment model, employing equations to estimate ventilation rates based on CO2 concentrations and other factors. The use of the TJWR model to calculate individual and room-scale infection probabilities further supports the appropriateness of the model.	The study published the assumptions of the model, including the constant number of the index case, the exposure duration, and the infectious virus removal rate attributed to air changes per hour (ACH), deposition rate, and virus inactivation rate.	The study published the formulas associated with the model, providing a detailed mathematical framework for estimating ventilation rates, calculating the quanta concentration at the inhalation position, and determining individual and room-scale infection probabilities.	The results and conclusions of the study appear to be consistent with the methodology and findings. The conclusions are supported by the data and analyses presented, including the impact of ACH on risk assessments and the evaluation of high-occupancy scenarios.	High
Foat et al., 2022 (35)	The description of the population and interventions in the study appears to be focused on a hypothetical scenario rather than a specific, real- world population. The "population" in this context refers to the simulated presence of an infected individual (or individuals) within a mechanically ventilated	The description of the model used in the study appears to be complete and appropriate for the objectives outlined. The study employs a computational fluid dynamics (CFD) model using an unsteady Reynolds-averaged Navier-Stokes (RANS) approach, coupled with a Lagrangian phase for the exhaled droplets. The methodology, geometry, and	While the study mentions the validation of the model against experimental data and the sensitivity analyses conducted, it does not explicitly detail all the assumptions made within the model. However, it is implied that assumptions regarding droplet size distribution, airflow patterns, and droplet evaporation rates under	The excerpts provided do not explicitly mention the publication of specific formulas associated with the computational fluid dynamics (CFD) model used in the study.	The results and conclusions presented by the authors seem consistent with the objectives and methodology of the study. The findings on the interdependency between temperature, relative humidity, and droplet dispersion are supported by statistical analysis. The use of quantile regression models and the acknowledgment of significant interactions	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	meeting room, emitting respiratory droplets through coughing. The interventions evaluated include adjustments to the room's temperature and humidity levels to understand their impact on the dispersion of respiratory droplets and the potential exposure of others in the room to viral particles.	mesh were based on previous validated models.	different environmental conditions were integral to the model's development. The study acknowledges the variability in droplet size distribution and the potential impact of measurement instruments on these distributions.		between temperature and RH further support the rigor and consistency of the study's conclusions.	
Foster, 2021 (36)	The description of the population in the study is adequately detailed for its objectives. The interventions evaluated in the study are well-chosen and reflect a comprehensive approach to mitigating the spread of COVID-19 in indoor settings.	The description of the model employed in the study is both complete and appropriate for the objectives set. The study utilizes computational fluid dynamics (CFD) simulations to evaluate the transmission of SARS-CoV-2 in classroom settings, incorporating a quanta-dispersion equation (QDE) to model the advection of viral-particle concentration. This approach is based on a finite-volume method within a commercial CFD code, Star CCM+. The methodology includes detailed considerations of classroom configurations, ventilation systems, and the effectiveness of various mitigation strategies such as face coverings, ventilation improvements, and air purifiers.	The authors have published the assumptions underlying their model. These assumptions include the well-fitted nature of face coverings consistent with surgical masks, the fixed position of masks on individuals, and the exclusion of partial masking from the model. Additionally, assumptions regarding the non- settlement of aerosols onto the floor and the stationary nature of participants during simulations are explicitly stated.	The study provides the formulas associated with the model, including the quanta-dispersion equation (QDE).	The results and conclusions presented by the authors are consistent with the methodology and assumptions of the study. The findings highlight the effectiveness of combined mitigation strategies in reducing the transmission of SARS-CoV-2 in classroom settings. The conclusions are supported by the detailed CFD simulations and the statistical analysis of transmission routes and probabilities.	Moderate
Gao, 2021 (37)	The description of the population and the interventions to be	The description of the model appears to be both complete and appropriate. The authors	The authors have published the assumptions of their model, acknowledging its	The formulas associated with the model are published, with detailed description of the multi-route transmission model.	The results and conclusions of the authors appear to be consistent with the objectives	Moderate
	somewhat general. The study focuses on a	simulation framework to assess the role of different	simplifications. For instance, they assume that long-range airborne droplets are evenly	1	The study distinguishes between different	

Study	Description of the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions	Confidence
	interventions is	appropriate	the model	the Model	Consistency	
	complete and					
	appropriate	transmission routes for	distributed inside a room		transmission routes and	
	framework to assess the	respiratory infections. The	which may deviate from		evaluates how key parameters	
	role of different	model highlights critical	real-world scenarios.		impact the total infection risk	
	transmission routes for	parameters determining the			and the relative contribution	
	respiratory infections,	contributions of different			from each route. The findings	
	which implies a broad	transmission routes and			are consistent with the study's	
	applicability to various	evaluates intervention			goals to improve the	
	specifying demographic	exposure distance ventilation			transmission dynamics and	
	characteristics such as age.	rates, and wearing masks. The			inform intervention	
	health status, or	simulation codes are made			strategies.	
	geographic location. This	freely available, enhancing the				
	broad approach is	model's transparency and				
	understandable given the	utility for further research.				
	study's aim to develop a					
	generalizable model that					
	guide interventions across					
	different settings and					
	populations.					
	Regarding the					
	interventions, the study					
	provides a clear					
	interventions evaluated					
	including increasing					
	exposure distance,					
	increasing ventilation rates,					
	and wearing masks.					
Ghoroghi et al.,	The population is defined	The description of the model	The study published its	The study provides specific formulas	The results and conclusions	Moderate
2022 (38)	as individuals and staff	appears to be complete and	major assumptions,	related to the model, such as the	presented by the authors	
	Cardiff University with a	appropriate for the study's	particularly regarding the	formula used to determine the number	appear to be consistent with	
	clear explanation of the	Agent-Based Modelling	for furniture and people, the		methodology of the study	
	space's capacity and	(ABM) to simulate the spread	assignment of heat		The study aimed to model	
	ventilation strategies. The	of SARS-CoV-2 in indoor	generation per person, and		and analyzed the quality of	
	interventions evaluated	environments, considering	the conditions applied to the		the indoor environment and	
	include wearing surgical	different ventilation scenarios	CFD simulation.		the efficacy of safety	
	face masks, vaccination	(Mechanical ventilation with			measures in preventing the	
	coverage, hand hygiene	no optimization, Mixed			spread of the SARS-CoV-2	
	implementation of specific	optimization and Mixed			There is consistency between	
	implementation of specific	ventilation with optimization).			There is consistency between	

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	hygiene measures within the selected zone.	Computational Fluid Dynamic (CFD) modelling is also discussed to simulate and investigate airflow distribution in various ventilation scenarios.			the study's results and conclusions.	
Guyot et al., 2022 (39)	The description of the population and the interventions to be evaluated appears to be adequately detailed for the purpose of the study. The selection of a real-world multi-family building as the case study provides a practical context for the analysis. The comprehensive evaluation of different ventilation systems and dilution strategies through window and door openings allows for a thorough investigation of potential mitigation measures.	The description of the model used in the study appears to be both complete and appropriate for the objectives of the research. The study employs a multizone approach using CONTAM software to investigate airflows and particle concentrations within a multi-family building, focusing on a "reference apartment". Each room in the house is modeled as one air zone, totaling 11 zones, with the indoor temperature maintained at 20°C, which is a standard assumption for such studies. The study also considers different ventilation systems and door/window opening scenarios to evaluate their impact on airflows and particle concentrations.	The authors have published several key assumptions of their model. These include the assumption of well- mixed air in every zone. The indoor temperature is assumed to be maintained at 20°C, and specific air leakage values for different parts of the building are used based on literature data. However, it's not clear if all assumptions related to the behavior of aerosolized viruses, such as their reactivity on surfaces or agglomeration behavior, are fully detailed. Supplementary material is not freely accessible.	The study provides some specific details about the formulas and methodologies used for modeling, such as the two-way flow model for airflows through open windows and doors, and the use of a discharge coefficient for these openings. For the ventilation systems, the study mentions the use of calculated operating curves and power laws to model airflows through trickle vents.	The results and conclusions appear consistent with the methodology and assumptions described. The study identifies that dilution strategies are more effective in reducing the risk of infection for almost all inhabitants, which aligns with the expected outcomes based on the described ventilation strategies and their implementation in the model.	Moderate
Jones et al., 2021 (40)	The population described in the reference scenario is a standard school classroom with 32 occupants, of which one is infected with SARS-CoV- 2, over a 7-hour school day. The interventions evaluated include maintaining low metabolic rates of occupants to minimize respiratory rates and thus exposure, and the application of ventilation	The description of the model used in the study is complete and appropriate. The authors have developed an analytical model to predict the number of viral genome copies (RNA copies) inhaled over a period in an indoor space. This model is implemented to investigate a range of scenarios and spaces using Excel spreadsheets and bespoke MATLAB code. A mass-balance model is central	The authors have published the assumptions of the model, which are crucial for its application and interpretation. The model assumes that RNA copies are generated at a single point at a constant rate and are mixed rapidly so that the change in the number of RNA copies in the space, with time, is approximately the same regardless of the sampling point. It also	While the text provides a general description of the model and its assumptions, it does not explicitly detail the formulas used within the model. The rate of change in the number of RNA copies in the space is described by a linear differential equation, but the specific formula is not provided.	The results and conclusions drawn from the model appear to be consistent with the methodology employed. The model is applied to a reference scenario (a standard school classroom) and other indoor scenarios, with a Monte Carlo approach used to quantify uncertainty in predictions. The Relative Exposure Index (REI) is introduced as a measure to compare different indoor	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
Lin et al. 2023	as a practical intervention to manage and regulate indoor spaces . The description of the population and the interventions to be evaluated is adequate for the scope of the study.	to this approach, which is used to investigate the number of RNA copies contained in aerosols transported to and from an indoor space. The model assumes rapid mixing of RNA copies generated at a constant rate, ensuring uniform distribution throughout the space.	assumes that no RNA copies are transported into the space from outside or connected spaces.	The study provides a detailed	spaces and activities in terms of exposure risk. The findings that ventilation should be monitored in classrooms to minimize far-field aerosol exposure risk and that scenarios involving high aerobic activities or singing have higher REI values are logical conclusions.	Moderate
(41)	population in this study is somewhat limited, focusing solely on the simulated manikins within a three-row segment of an aircraft cabin. While this simplification is understandable given computational constraints, it may not fully capture the complexity of human behavior and movement within a larger, fully occupied cabin. The interventions evaluated, namely the DV and MV ventilation systems, are adequately described in terms of their operational principles and the specific configurations used in the simulations.	The description of the model used in the study is both complete and appropriate. The authors have detailed the geometry and meshing of the aircraft cabin segment, including the simplifications made due to computational constraints, such as modeling only three rows of seats and using manikins to represent passengers. The boundary conditions, including the mouth opening for droplet release and the environmental conditions like relative humidity and temperature, are also clearly defined. The use of a well-validated Computational Fluid Particle Dynamics (CFPD) model, along with the SST k- ω model for airflow and droplet propagation, and the integration of the Wells-Riley model for assessing respiratory disease transmission risk, indicates a comprehensive approach to modeling the cabin environment under different ventilation systems.	the authors have published the assumptions underlying their model. These include the simplification of the cabin geometry, the representation of passengers by manikins, and the assumption about the main heat source in the cabin. Assumptions regarding the evaporation process of droplets, based on relative humidity and temperature, and the content of volatile and non-volatile substances in the droplet solution are also explicitly stated. Furthermore, the assumption of symmetrical dispersion of the airflow field allowing for the simulation of only one half of the chamber is mentioned, which is crucial for understanding the model's limitations and scope.	publication of the formulas associated with the model. This includes the governing equations for the continuous air and evaporation process of liquid droplets, the dynamic diffusion rate of water vapor, and the phase change latent heat transfer formula. Additionally, the study details the equations used in the Wells-Riley model for assessing the risk of respiratory disease transmission and the PSI-C scheme for integrating the mass of fine particles over time to obtain the concentration of the discrete phase in a cell. These formulas are essential for understanding the computational framework and the basis for the simulation results.	presented by the authors are consistent with the methodology and analysis employed in the study.	houerate

Study	Description of the population and the interventions is complete and	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
Luo et al., 2023 (42)	The description of the population and the interventions evaluated in the study appears to be focused on a specific scenario: the dispersion of infectious droplets in a coach bus environment during a COVID-19 outbreak. However, the paper does not explicitly detail the characteristics of the population involved, such as the number of passengers, their seating arrangement, or health status. Instead, the study seems to concentrate on the environmental and mechanical interventions to mitigate infection risk, including opening and closing windows and the use of a wind catcher, bus speeds, infector location	The description of the model used in the study is comprehensive and appropriate for the objectives outlined. The model incorporates a coupled approach to simulate both outdoor wind flow and indoor airflow within a coach bus, considering various factors such as window positions, areas for natural ventilation, and the addition of a wind catcher. The physical model is based on a double-decker 48- seat coach bus, with detailed dimensions provided and specific infector positions identified to assess the impact on potential infection risk. The computational domain, grid arrangements, and boundary conditions are clearly described, ensuring a thorough understanding of	The study published several assumptions critical to the model's construction and simulation processes. These include the use of the RNG k-e model for simulating airflows, the application of the Boussinesq hypothesis for thermal buoyancy effects, and the selection of ethane (C2H6) as a tracer gas to represent fine droplet nuclei. Additionally, assumptions regarding the ambient relative humidity and the initial diameters of exhaled droplets are explicitly stated. These assumptions re easing and computational feasibility, providing a clear basis for the model's operation.	The study provides specific formulas related to the model, such as those for calculating the gradient of vapor concentrations between the droplet surface and the surrounding air, and for assessing the Sherwood number, which is crucial for understanding mass transfer processes. These formulas are integral to the simulation of droplet dispersion and the evaluation of potential infection risk, demonstrating the study's scientific rigor and the detailed nature of the modeling approach.	The results and conclusions presented by the authors appear to be consistent with the methodologies and analyses conducted throughout the study. Overall, the consistency between the study's results and conclusions is evident, as the authors effectively demonstrate how the interventions studied can contribute to reducing the potential infection risk in a coach bus environment. The study's methodology, analysis, and findings all align to support the conclusion that improving natural ventilation through the opening of windows and the use of a wind catcher, along with considering other factors such as bus speed and infector location, can be	Moderate
Martinez, 2022 (43)	The description of the population in the study is somewhat implicit, focusing primarily on occupants of a "realistic office scenario." While specific demographic details of the population are not provided, the study's context suggests a diverse group of office workers. The agent-based model's ability to simulate individual behaviors and	the modeling environment. The description of the model used, ArchABM, is comprehensive and appropriate for the study's objectives. It integrates the model developed by Peng et al., which calculates both the virus quanta concentration and the CO2 mixing ratio in a specific place. This model is chosen for its ability to provide an overall picture of indoor air quality (IAQ), crucial for assessing the	The assumptions underlying the model are implicitly published through the description of its operation and the adaptation of equations to simulate real- world scenarios. For instance, the adaptation of the standard model to account for the dynamic nature of human interactions within indoor environments and the decay of virus quanta	The formulas associated with the model, particularly those adapted from the standard model by Peng and Jimenez, are published and discussed. This includes equations for calculating the quanta concentration during events and its decay due to ventilation rates, virus decay rate, and deposition rate to surfaces. These formulas are crucial for understanding how the model simulates the dynamics of virus transmission and IAQ under different scenarios.	effective strategies in mitigating the spread of airborne diseases in public transportation. The results and conclusions presented by the authors appear to be consistent with the methodology and objectives of their study. The study found that limiting meeting duration and wearing masks were among the most effective measures in improving IAQ and reducing virus transmission risk. This conclusion is supported by the statistical analysis of the experiments, which showed	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interactions suggests that the population dynamics, although not explicitly detailed, are adequately represented for the study's purposes. The interventions evaluated in the study are well-described and relevant to the objective of improving indoor air quality in office environments.	airborne transmission of SARS-CoV-2.	concentration in the absence of contagious individuals are significant assumptions. While explicit listing of all assumptions is not provided, the critical assumptions for the model's operation and adaptation are discussed.		significant reductions in CO2 and virus quanta levels when these interventions were applied.	
Miller et al., 2022 (44)	The description of the population and interventions in the study appears to be adequately detailed for the purpose of modeling virus transmission in a subway train context. The population is implicitly defined as subway passengers, with distinctions made based on their infectious status (infectious vs. non- infectious) and behaviors (mask-wearing, hand hygiene practices). The interventions evaluated include practical measures that can be implemented in public transportation settings. However, the study could benefit from a more explicit description of the demographic characteristics of the population (age, health status, etc.) and how these might influence exposure	The Transmission of Virus in Carriages (TVC) model is described as a computational model simulating potential exposure to SARS-CoV-2 for passengers traveling in a subway rail system. It considers exposure through three different routes: fomites via contact with contaminated surfaces; close-range exposure, accounting for aerosol and droplet transmission within 2 meters of the infectious source; and airborne exposure via small aerosols not reliant on being within 2 meters distance from the infectious source. The model incorporates typical subway parameters and aims to evaluate the relative effect of environmental and behavioral factors, including virus prevalence in the population and the number of people.	The authors have outlined the main assumptions behind the TVC model, including the modeling of the three different transmission routes (fomite, close-range, and long-range airborne) and the simulation of individual passengers' journeys. They acknowledge the limitations and assumptions that may influence model outcomes, such as fixed parameter values and assumptions based on existing knowledge. Specific behavior-related parameters, like the number of surfaces touched by passengers or the time for passengers to sanitize their hands, are highlighted as areas where assumptions were made due to the lack of detailed data. While the authors have published several assumptions, the detailed list of assumptions, especially those related to parameter	Details on how representative transportation is chosen when simulating passenger trips and estimating SARS-CoV-2 exposure within the TVC model are provided in the supplementary material. They also show how passengers are located within a 2 m radius of an infected passenger during their trip, and we provide an overview of the method used to adjust the surface area within 0-1 m and 1-2 m of the infected passenger to consider possible positions of this passenger inside the car. The surface area within the carriage as a whole and the region of the carriage within 2 m of an infectious passenger are estimated. Finally, precise details on the implementation of the different droplet models and droplet evaporation calculations are provided, and a complete list of parameter values within the TVC model is provided.	The authors' results and conclusions are consistent with the data and analyses presented, demonstrating a comprehensive and methodical approach to evaluating the risk of SARS- CoV-2 transmission in subway environments. The findings are well-supported by the model's predictions and the sensitivity analysis conducted, providing a reliable basis for the conclusions drawn.	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	risks and the effectiveness		values, is found in the			
	of interventions.		Supplementary Material.			
Mizukoshi et al., 2023 (45)	The description of the population and the interventions to be evaluated appears to be adequate. The study provides a clear overview of the office environment, the number of employees involved, and the spatial distribution of infected cases, which is crucial for understanding the transmission dynamics within the office. The methodology for evaluating the efficacy of infection control measures, including the modeling of transmission pathways and the simulation of exposure scenarios, is well-defined and appropriate for the study's objectives.	The description of the model used in the study appears to be complete and appropriate for the objectives set forth. The study employs a well- mixed model to describe virus concentration in the air across different zones within an office environment, which is a typical approach for assessing the risk and efficacy of infection control measures in such settings. Additionally, the fomite transmission pathway is modeled using a Markov chain, which is a recognized method for analyzing transitions between states in epidemiological studies.	The study published the assumptions of the model. These assumptions include: 1.The mask removal efficiency for aerosols. 2. The office spaces. 3. The fomite transmission pathway. 4. Several specific assumptions were made regarding the environmental conditions and the behavior of the virus. Such as the uniform emission of droplets and aerosols by multiple cases with the same high virus concentration in the saliva, which may be overestimated. The decrease of source case numbers by infection control measures and the transmission in spaces other than the office room, such as elevators or restrooms, were not considered.	The study published the formulas associated with the model, specifically the equations describing the virus concentration in the air for each zone within the office environment. These equations are fundamental to understanding how the model quantifies the risk of transmission and evaluates the efficacy of infection control measures. The publication of these formulas allows for a clearer understanding of the model's workings and its application to the study's objectives.	The results and conclusions presented by the authors seem to be consistent with the methodology employed and the data collected. The study aimed to deduce the transmission cause and estimate the effectiveness of prevention control measures for each transmission pathway by simulating exposure to SARS-CoV-2 in a similar indoor space under the same environmental conditions as the cluster. The study's objectives, to verify the quantitative risk from each transmission pathway and quantify the control measure effects such as masks and ventilation, align with the models and methodologies described, suggesting a consistency in the results and conclusions.	High
Mokhtari,2021 (46)	The description of the population and the interventions evaluated in the study is adequate, offering a clear and detailed overview of the research context, the measures taken to address the research questions, and the methodologies employed to evaluate the interventions' effectiveness.	The description of the model used in the study appears to be complete and appropriate for the objectives set by the authors. The model integrates aspects of building energy consumption and COVID-19 infection risk, employing the NSGA-II algorithm for multi- objective optimization. The study uses EnergyPlus for energy simulation and incorporates the Wells-Riley and Gammaitoni-Nucci models for assessing COVID-	The authors have published several key assumptions of their model. These include the consideration of only respiratory transmission risk for COVID-19, the constant quanta emission rate, and the assumption that the period of the disease is longer than the time scale of the model. While these assumptions are critical for simplifying the complex reality of COVID-19 transmission and building	The study has published essential formulas associated with the model, including those for calculating the PMV value for thermal comfort, the sensible heat generated by occupants, and the equations used in the optimization problem to minimize the number of infected people and energy consumption. Additionally, the study references the Wells-Riley and Gammaitoni-Nucci models for infection risk assessment, providing a basis for the infection risk calculation. However, the detailed mathematical representation of the COVID-19	The results and conclusions presented by the authors seem consistent with the objectives and methodology of the study. They successfully demonstrate the application of their model in a case study building, showing how the optimization approach can lead to a set of non- dominated solutions that balance the trade-off between minimizing infection risk and energy consumption. The use	High

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
		19 infection risk, which are well-regarded in their respective fields. The integration of these models to simultaneously minimize infected people count and HVAC system energy consumption is both innovative and relevant to the current global context.	energy dynamics, it is not clear if all assumptions have been fully disclosed, such as assumptions related to occupant behavior or specific HVAC system operations.	infection risk model, particularly how it integrates with the building energy model, could be further elaborated for complete clarity.	of validation data from several universities in the United States to validate the mathematical model for estimating the number of infected people adds credibility to their conclusions.	
Moritz,2021 (47)	The description of the interventions is thorough and provides a clear understanding of the measures implemented to mitigate the risk of COVID-19 transmission during the event. The detailed account of hygiene practices, contact tracing efforts, and the use of simulation models to predict aerosol distribution and epidemiological outcomes offers a comprehensive overview of the study's methodology. The description of the population involved in the study (age, sex and place of origin) is detailed in the supplementary material.	The description of the model used in the study appears to be comprehensive and appropriate for the objectives of the research. The methodology includes an experiment with a pop concert under controlled conditions, assessment of aerosol distribution using computational fluid dynamics (CFD), and an epidemiological simulation integrating contact tracing and aerosol distribution results. Additionally, the study incorporates a contact network model based on the European POLYMOD contact study, with specific adaptations to the population of Leipzig, considering various contact settings and network sizes.	The study published several key assumptions of the model. It assumes specific daily contact rates based on the POLYMOD study, adjusted to the demographics of Leipzig. It outlines the types of contact settings considered (household, school/work, and other) and details regarding the selection of individuals for different settings, such as schools, workplaces, and events. The model also assumes that only contacts longer than 15 minutes are considered high-risk, in line with the RKI definition. In the supplementary material the authors describe the model parameters and other assumed assumptions.	The study provides a summary of the detailed parameters and equations used for the aerosol distribution model, including how aerosol exposure was quantified and the use of particle tracking software for aerosol movement simulation. Additionally, the parameters and equations with their details are specified in annex 41467_2021_25317_MOESM1_ESM.In the case of epidemiological simulation, the model used is the SEIR, in the R program, for which the authors provide the code in a Zénodo database, and the results obtained are all in 3 annexes that consist of Excel tables with output data.	The results and conclusions drawn by the authors seem consistent with the methodology and data presented. The study employs a rigorous approach to model SARS-CoV-2 transmission risk during a mass gathering event, integrating experimental data, aerosol dynamics, and epidemiological simulations. The use of a detailed contact network model tailored to the specific demographics of Leipzig adds to the credibility of the findings.	High
Niu et al., 2022 (48)	The study mentions occupants of an office building as the population for the subjective survey. However, it does not provide specific details	The studies referenced provide a comprehensive description of the models used to evaluate the indoor environment and personnel satisfaction. For instance, Cao	While the studies mention the development and application of models, there is a lack of explicit detail regarding the assumptions underlying these models in	The studies provide some formulas related to the models and analyses used. For example, the formula for calculating the gray correlation degree between the comparison sequence and the reference sequence is explicitly mentioned, which	The results and conclusions presented in the studies appear to be consistent with the methodologies and analyses employed. For instance, the findings that	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	about the demographic characteristics of the participants (e.g., age, gender, occupation) or the total number of participants involved. Such information is crucial to understand the representativeness and generalizability of the findings. The study evaluates the impact of fresh air systems on the indoor environment, focusing on air quality and temperature. While it mentions assessing different operation modes of these systems for epidemic prevention, it does not detail the specific interventions or changes made to the fresh air systems.	et al. (2012) developed a multivariate regression model for overall satisfaction in public buildings based on field studies, which suggests a detailed approach to modeling. Similarly, the study by Pei et al. (2015) established a regression model of indoor environmental parameters and personnel satisfaction, indicating a methodological framework for predicting and assessing the indoor environment.	the provided citations. For a thorough evaluation, it is crucial to understand the assumptions made during model development, such as linearity, independence of errors, or normal distribution of residuals, which are not explicitly detailed in the provided references.	is crucial for understanding the analysis of the impact of indoor environmental parameters on personnel satisfaction. However, not all formulas or mathematical expressions directly associated with the regression models or other evaluative models are detailed in the provided citations, which might limit the ability to fully replicate or scrutinize the study's methodology.	temperature, fresh air volume, and CO2 concentration significantly influence personnel satisfaction align with the models' focus on evaluating indoor environmental parameters. Furthermore, the emphasis on both objective and subjective analyses supports a comprehensive understanding of the indoor environment's impact on personnel satisfaction, reinforcing the consistency of the study's conclusions with its results. The studies' conclusions about the importance of considering various environmental parameters in the design of air conditioning and fresh air systems to enhance personnel satisfaction also logically follow from the analyses conducted.	
O' Donovan et al., 2023 (49)	The population in focus is implicitly defined as occupants of university lecture rooms, which likely includes students and faculty members. The interventions evaluated, namely different ventilation retrofit scenarios, are well- described and relevant to the study's objectives.	The description of the model used in the study is complete and appropriate for the objectives set out by the authors. The methodology involves a three-stage infectious risk assessment modeling methodology, which includes ventilation airflow rate modeling, a design stage airborne infectious risk modeling check, and a seasonality check stage. The use of the Wells-Riley model is central to this methodology.	The authors have published the assumptions of the model, which include the use of static models for practical usability at the early building design stages, the assumption of well-mixed indoor air with contaminants homogeneously distributed, and the consideration of sedentary nature of lecture room environments. Additionally, the study acknowledges the uncertainty in predicted airflow rates and its impact	The study published the formulas associated with the model, including the equation defining the infiltration airflow rate based on the work of Sherman and Grimsrud and the classical form of the Wells-Riley equation for assessing the risk of infectious disease transmission.	The results and conclusions of the authors are consistent with the methodology and findings presented in the study. The conclusions are supported by the study's findings on the effectiveness of different ventilation retrofit scenarios and the impact of various factors on airborne infectious risk, demonstrating a logical consistency between the results and the authors' conclusions.	Moderate

Study	Description of the population and the interventions is	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	complete and appropriate					
			on the Wells-Riley model's output, providing a degree of transparency about the model's limitations			
Osterman, 2022 (50)	The description of the population and the interventions to be evaluated appears to be adequately detailed for the purpose of the study. The population in question includes occupants of the selected educational building, with specific attention to parameters that affect the spread of infectious aerosols, such as the maximum number of occupants and the number of seats. The interventions evaluated include the existing ventilation systems and the potential for natural ventilation through the opening of windows.	The description of the model used in the study is complete and appropriate. The study employs the Wells-Riley model to determine the probability of infection for the selected space and human activity. This model is well- regarded for assessing the risk of airborne transmission of infectious diseases in indoor environments. The use of the REHVA COVID-19 ventilation calculator, based on the Wells-Riley model, is specifically mentioned.	The authors have published all the critical assumptions of the model. These include the constant rate of quanta emission throughout the event, the presence of an infected occupant in the room during all occupancy time, the even distribution of infectious respiratory aerosol throughout the well- mixed room air, and the removal of infectious quanta by ventilation, filtration, deposition, and airborne virus decay. These assumptions are fundamental to the Wells- Riley model and their disclosure ensures transparency and reproducibility of the study's findines	The study has published the formulas associated with the model. The probability of infection is defined by a specific equation, and the average concentration of infectious quanta is defined by another equation. The publication of these formulas allows for an understanding of how the probability of infection is calculated and the factors that influence it.	The results and conclusions of the authors appear to be consistent with the methodology and findings of the study. The study assesses the ventilation efficiency in an educational building and uses the REHVA calculator to estimate the risk of infection under different scenarios. The conclusions drawn from these results are in line with the objectives and methodology of the study, demonstrating a logical consistency throughout	High
Pang, 2023 (51)	The description of the population and interventions in the study appears to be adequately detailed for the purpose of the research. The population in focus is occupants of office buildings, which is a relevant group for studying the spread of COVID-19 in indoor environments. The study specifically considers variables that affect this population, such as occupancy density and	The description of the model used in the study is both complete and appropriate. The model is based on the EnergyPlus medium-sized office building model, which is detailed with a three-story structure and a total floor area of 4,982 m ² . It includes various space types such as enclosed offices, open offices, and conference rooms, which are relevant for assessing COVID-19 infection risk in an office environment. The model settings also detail the	The study published its assumptions regarding the model, particularly in the context of occupant behavior and the pre- COVID-19 occupancy schedules. It acknowledges that the occupant schedule used was based on pre- COVID-19 behaviors, which is an important assumption given the impact of occupancy on infection risk and building energy consumption.	The study published the formulas associated with the model, particularly the Gammaitoni-Nucci (GN) model used for quantifying COVID-19 infection risk. The GN model equation is provided, along with the necessary input parameters for the model, such as pulmonary ventilation rate, space volume, air change rate, quanta generation rate, number of infectors, and exposure time interval.	The results and conclusions of the study are consistent in several aspects of the risk of COVID-19 transmission in indoor environments and the role of ventilation in mitigating these risks. Furthermore, the study recognizes limitations such as not considering the loss and deposition of aerosol particles or the filtration effect of air filters and/or face masks, which could lead to an overestimation of the risk of infection. Overall, the	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	exposure time, which are critical factors in assessing infection risk. The interventions evaluated are clearly defined and relevant to the study's objectives. The supplementary material provides a more detailed description of the characteristics of the office buildings, the climatic conditions of the cities and other important aspects for the development of the model such as office occupancy.	HVAC system, including air handling units (AHU) for each floor and variable air volume (VAV) terminal boxes for each zone, which are crucial for understanding the air quality and ventilation effectiveness in the building.	In the supplementary material the authors describe the model parameters and other assumed assumptions.		study's conclusions are consistent with its findings, emphasizing the importance of ventilation in managing the risk of COVID-19 transmission while also highlighting the need for future research to address its limitations.	
Pease et al., 2021 (52)	The description of the population and the interventions to be evaluated is somewhat implicit rather than explicitly detailed. The population, in this case, seems to be occupants of a small multiple room building, potentially including residential, office, or healthcare settings, given the focus on SARS-CoV-2 transmission. The study does not delve into specific population demographics or behaviors that could influence individual risk levels. However, given the study's primary aim to evaluate environmental interventions rather than individual-level outcomes, this approach can be deemed appropriate. The	The description of the model used in the study is both complete and appropriate. The authors explicitly derive equations and describe parameters to evaluate the influence of filtration, air change rates, and the fraction of outdoor air on the probability of infection using a well-mixed modeling approach for a multiroom building.	The authors have published the assumptions of the model, which are critical for understanding the scope and applicability of their findings. For instance, the well-mixed approximation assumes uniform concentration within each room and the common plenum, which simplifies the complex dynamics of aerosolized particles in indoor environments.	The publication includes the formulas associated with the model, which are essential for replicating the study's findings or applying the model to other settings. Equations are provided for the conservation of mass in the context of a connected multiroom building, accounting for various factors such as air change rates, decay rate constants, and settling velocity of particles.	The results and conclusions presented by the authors are consistent with the methodology and analysis employed in the study. They conclude that filtration is the most effective method in lowering aerosol concentration and probability of infection, followed by the introduction of outdoor air. These conclusions are directly supported by the quantitative analysis of aerosolized viral spread in a multiroom building and align with the theoretical framework established by the well-mixed model approach. The use of the Wells-Riley equation to connect the model's outcomes with the risk of infection further solidifies the consistency between the results and the conclusions.	High

Study	Description of the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interventions is	appropriate	the model	the Model	Consistency	
	complete and	** *				
	appropriate					
	interventions evaluated are					
	well-described and relevant					
	to the study's goals,					
	providing valuable insights					
	into how building					
	ventilation systems can be					
	risk of aerosolized viral					
	transmission					
Rep. 2022 (53)	The study's description of	The description of the model	While the study outlines the	The study provides some of the	The results and conclusions	Moderate
Refi, 2022 (55)	the interventions	used in the study is	general framework and	formulas associated with the model	presented by the authors	moderate
	specifically the comparison	comprehensive and	methodology, there is a lack	such as the general forms of	appear to be consistent with	
	between different	appropriate for the objectives	of explicit detail regarding	momentum, temperature, and pollutant	the methodology and	
	ventilation modes (MV,	set forth. The study employs	all the assumptions made	transport equations. Additionally, the	objectives outlined in their	
	SFRC-1, and SFRC-2) and	Computational Fluid	within the model. For	formula for calculating the Predicted	study. The authors aimed to	
	the optimization of supply	Dynamics (CFD) simulations	instance, the study mentions	Mean Vote (PMV) is also shared, which	investigate the effects of	
	air parameters, is	to analyze the effects of	the use of heat source terms	is used to represent the level of thermal	different ventilation systems	
	adequately detailed. It	different ventilation modes on	for passenger sensible heat	comfort of occupants. However, the	on environmental parameters,	
	provides a clear	airflow, temperature, and CO2	and equipment, and CO2	detailed formulas for other evaluation	infection risk, and energy	
	understanding of the	concentration within a subway	sources for passengers,	models like ADPI, PRE, and infection	consumption in subway	
	variables being tested and	carriage. The use of the Re-	which are defined using	probability are not explicitly provided in	carriages. The relative	
	the rationale behind	Normalization Group (KING)	(UDE) However the	the summary.	quantitative results of the	
	interventions to improve	R-e model for solving the Revolds averaged Navier	(UDF). However, the		evaluation for different	
	the subway carriage	Stokes (BANS) equations is	to these source terms or		ventilation systems further	
	environment.	specified which is suitable for	how they were quantified		support their conclusions.	
	However, the description	capturing the turbulence	are not fully disclosed.		Therefore, based on the	
	of the population is not	characteristics of airflow in			detailed methodology,	
	explicitly mentioned. While	such environments.			analysis, and evaluation	
	the study includes	Additionally, the study			presented, the authors'	
	questionnaires to gauge	incorporates various			conclusions are consistent	
	passenger satisfaction,	evaluation models (ADPI,			with their results	
	there is no detailed	PMV, PRE, infection				
	information on the	probability, and cooling load)				
	demographic	to assess the comprehensive				
	characteristics of the	performance of the ventilation				
	age gender or health	systems.				
Ren 2022 (54)	The description of the	The description of the model	The study clearly outlines its	While the study provides a detailed	Results and Conclusions the	Moderate
1011,2022 (04)	population (i.e., classroom	used in the study is both	assumptions. For instance it	description of the computational setup	results and conclusions of the	mouchaic
	occupants) and the	complete and appropriate.	mentions that the driving	and boundary conditions used in the	authors are consistent. The	
	interventions (i.e., window	The study provides detailed	force of temperature is not	simulations, including the inflow profile	findings indicate that these	
	design optimizations and	dimensions of the classroom,	considered due to the	of wind speed and the conditions for	interventions can enhance	

Study	Description of the	Description of the model to	Published Assumptions of	Published Formulas Associated with	Results and Conclusions	Confidence
	interventions is	appropriate	ule Model	the Model	Consistency	
	complete and	-pp-op-init				
	appropriate					
	the use of window-	including its length, width,	potentially negligible	various boundaries (doors, windows,	ventilation efficiency and	
	integrated fans) is	height, and volume, as well as	temperature difference	walls), it does not explicitly publish the	reduce infection risk,	
	adequately detailed. The	specifics about the ventilation	between indoor and outdoor	mathematical formulas associated with	particularly in transitional	
	study specifies the	sources such as doors and	transition seasons which are	the model's core dynamics, such as the	topporatures. This	
	the arrangement and	classroom setup including the	more favorable for natural	contaminant dispersion within the	conclusion is supported by	
	number of desks, and the	arrangement of desks and the	ventilation. This assumption	classroom. The reference to the use of	numerical simulations that	
	maximum occupancy to	maximum number of	is critical as it simplifies the	commercial ANSYS Fluent 16.0	show acceptable performance	
	ensure a minimum safe	occupants, ensuring a safe	model by focusing on wind-	software for simulations is made, but	for cross-ventilation, with	
	distance of 1 meter	social distance.	driven natural ventilation	specific formulas or equations directly	prediction errors for indoor	
	between individuals. This		without the complexities	used in the simulations are not detailed	average velocity and Air	
	level of detail provides a		introduced by thermal	in the provided excerpts.	Changes per Hour (ACH)	
	clear understanding of the		effects. However, the study		values within acceptable	
	study's context and the		might not detail all		margins. Furthermore, the	
	which the interventions are		model's physical properties		limitations and suggests areas	
	evaluated. The		or the simplifications made		for future research such as	
	interventions themselves,		in the simulation setup, such		the need for more detailed	
	including the optimization		as assumptions about		simulation setups and the	
	of window openings and		occupant behavior or the		exploration of low-cost	
	the implementation of		emission rates of		prevention approaches in	
	window-integrated fans,		contaminants.		poorly designed and	
	are described in terms of				ventilated rooms.	
	their objectives to enhance					
	reduce infection risk. The					
	study's methodology					
	combining experimental					
	validation with detailed					
	numerical simulations,					
	allows for a					
	comprehensive evaluation					
D' 1'1 1	of these interventions.		P=11 1 11·1 1·			
Kiediker et al., $2020(55)$	The description of the	The description of the model	The study published its	while the study provides a detailed	I he results and conclusions	Moderate
2020 (55)	interventions as provided	be complete and appropriate	viral load present in the	assumptions behind the viral load	The mathematical modeling	
	appears to be somewhat	for the objectives set by the	lining liquid of respiratory	estimations, it does not explicitly	conducted by the authors	
	adequate but lacks specific	researchers. The researchers	bronchioles, based on data	publish the formulas associated with the	suggests that the viral load in	
	details that would be	used a well-mixed 1-	from sputum and swab	model in the provided excerpts. The	the air can reach critical	
	crucial for replicating the	compartment model to	samples of individuals with	detailed statistical analysis and the	concentrations in small and	
	study or assessing its	simulate the situation in a	COVID-19. The	models' code are mentioned to be	poorly ventilated rooms,	
	applicability to broader	closed room with different	assumptions for viral load	available on request, which suggests that	especially when the individual	
	contexts. The population is	ventilation air exchange rates.	estimations were 1000	while the formulas might be available	is a super-spreader. This	

Study	Description of the population and the interventions is	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	appropriate					
	described in broad terms as individuals with asymptomatic to moderate COVID-19, without specifying the criteria used to define these categories or any demographic information about the participants (age, sex, underlying health conditions). The interventions evaluated, namely the impact of breathing and coughing by infected individuals in small, poorly ventilated rooms, are	This approach is suitable for assessing the risk of aerosol transmission in a controlled environment, such as a medical examination room or an office shared by 2 to 3 people. The methodology follows the concept of Strengthening the Reporting of Empirical Simulation Studies (STRESS) guideline.	copies/mL for a low emitter, 10 ⁶ copies/mL for a typical emitter, and 1.3 × 10 ¹¹ copies/mL for a high emitter.	for further scrutiny, they are not directly published within the study's text.	finding is in line with their conclusion that strict respiratory protection is recommended in such environments to mitigate the risk of infection, particularly when in the presence of individuals emitting a high viral load through coughing for prolonged periods.	
Sarhan et al., 2022 (56)	The description of the population and the interventions evaluated appears to be adequately detailed for the study's objectives. The computational domain was assumed to be a medium- sized passenger car with a driver and three passengers, labeled as Driver, Passenger A, Passenger B, and Passenger C. The infected person's location is referred to as the index case. The study's focus on identifying the safest spot within the passenger car while sharing it with a COVID-19 patient is clear, and the interventions evaluated—different modes of the HVAC system—were relevant to	The description of the model used in the study is comprehensive and appears to be appropriate for the objectives of the investigation. The authors employed a 3D numerical model of airflow and associated aerosol transport within a passenger car using commercial CFD software AVL FIRE 2021. The Eulerian method coupled with the k-€ model was utilized to simulate the airflow field in the computational domain, which is a medium- sized passenger car with a driver and three passengers. The study also considered human respiration activities, such as breathing and speaking, within the car cabin. This level of detail in the model description, including the use of turbulence models	The authors have published key assumptions of the model. These include the assumption that aerosol transport is a 2-phase flow where gas is the continuous phase, and the droplets/particles are a dispersed phase. The study assumes a specific size for the droplets ($\geq 1 \ \mu$ m) and considers gravity's role in particle sedimentation. The breathing and speaking activities of both infected and non-infected individuals are modeled with specific rates and a sinusoidal cycle for inhalation and exhalation. These assumptions are critical for understanding the model's framework and the conditions under which the simulations were performed.	The study provides detailed formulas associated with the model, including those for calculating the relative velocity between phases, the drag coefficient, and the terminal velocity of droplets. These formulas are essential for understanding how the model predicts the behavior of aerosols within the car cabin. The inclusion of such mathematical details contributes to the transparency and reproducibility of the study's findings.	The results and conclusions presented by the authors are consistent with the objectives and methodology of the study. The findings indicate the time duration to get infected and are effective in the prevention of infectious airborne diseases such as SARS-CoV-2 by identifying the movement of droplets. These results align with existing literature on the airborne transmission of COVID-19 and suggest that the model could be useful for future engineering studies aimed at designing public transport and passenger cars.	High

Study	Description of the population and the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interventions is	appropriate				
	complete and					
	the study's aim of reducing	and the pressure-based solver				
	the risk of contracting the	with the SIMPLE algorithm,				
	virus.	supports the appropriateness of the methodology for				
		predicting aerosol transport				
		a passenger car environment.				
Sha et al., 2024	The study focuses on the	The description of the model	The authors have published	The study published the formulas	The results and conclusions	Moderate
(57)	occupants of buildings,	used in the study appears to	the assumptions of the	associated with both the energy models	presented by the authors are	
	specifically high-rise	be complete and appropriate	model, particularly in the	and the modified WR model. For the	consistent with the objectives	
	buildings, as the	for the objectives set by the	modification of the WR	energy models, equations simulating the	and methodology of the	
	population at risk of	authors. The study introduces	model where they	power of the chiller and components of	study. The authors conclude	
	COVID-19 airborne	a modified Wells-Riley model	incorporate three	the mechanical ventilation system are	that operating a ventilation	
	transmission. The	to calculate the ventilation	coefficients to account for	provided. For the modified WR model,	system to provide maximum	
	interventions evaluated	rates required to reduce the	social distancing, wearing a	informula used to estimate the	outdoor airflow rates may be	
	implementation of a new	transmission incorporating	rates. These assumptions are	aforementioned coefficients is explicitly	transmission of COVID-19	
	ventilation control strategy	factors such as social	based on previous studies	stated	suggesting the need to	
	that combines dilution	distancing, mask-wearing, and	that validated the effects of	Stated.	consider diluting airborne	
	ventilation (DV) and	initial infection rates.	these coefficients, indicating		pathogens in ventilation	
	ventilative cooling (VC),	Additionally, the study details	that the authors have		system design. This	
	along with the	the energy models used to	considered existing literature		conclusion directly follows	
	optimization of fan flow	estimate the cooling and	to inform their model's		from the application of the	
	rates and consideration of	ventilation energy	assumptions.		modified WR model and the	
	real-time occupancy to	consumption.			energy models to a case study	
	achieve energy savings				building, demonstrating the	
	without compromising				effectiveness of the proposed	
	indoor air				ventilation control strategy in	
	quality. However, the study				reducing infection risk and	
	description by providing				unidation of the energy	
	more specific details about				models' prediction accuracy	
	the demographic				further supports the reliability	
	characteristics of the				of the study's conclusions.	
	building occupants (e.g.,				,	
	age, health status) and the					
	types of buildings (e.g.,					
	residential, commercial)					
	considered in the case					
01	studies.				A-19 4 4 4 4	
Shen et al., 2021	The description of the	The description of the model	The study has published all	The study has published the formulas	The results and conclusions	High
(58)	population and the	used in the study is both	the critical assumptions of	associated with the Wells-Kiley model,	of the authors appear to be	
	interventions evaluated in	complete and appropriate.	the model. It assumes a	detailing now the infection possibility is	consistent with the	

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	the study appears to be adequately detailed for the purpose of assessing IAQ control strategies against SARS-CoV-2 transmission. The study provides a comprehensive analysis of various IAQ control strategies, including ventilation improvements, filter upgrades, air cleaners, and the use of masks. It also considers the cost and effort of implementation.	The study employs the Wells- Riley model to estimate the infection risk of airborne transmission in enclosed environments, assuming a steady-state and well-mixed indoor environment. Additionally, the study incorporates a modified SARS-CoV-2 airborne transmission model to systematically evaluate multi- scale Indoor Air Quality (IAQ) control strategies, with probability functions of essential model parameters determined based on a comprehensive literature review. The use of a stochastic Monte Carlo approach to account for the variability of input data further enhances the model's robustness.	steady-state and well-mixed indoor environment as per the Wells-Riley model's requirements. The well- mixing assumption, which does not consider the detailed local airflow pattern in the room, is acknowledged as a limitation, indicating transparency about the model's assumptions. The study also assumes the presence of asymptomatic infectors and uses an estimated proportion of active asymptomatic patients to assign the number of index patients in the target space.	calculated as a function of various factors such as the number of pathogen carriers, the infectious quantum generation rate per infector, the fraction of infectious particle penetration through the face mask, pulmonary ventilation rate, exposure time, and the equivalent fresh air change rate in the room. Additionally, specific parameters like the pulmonary ventilation rate and the removal efficiency of filters for infectious particles are discussed with references to equations and tables.	methodology and findings presented. The study observes that under the established baseline conditions, spaces in long- term care facilities, colleges, meat plants, hotels, restaurants, casinos, and cruise ships would face considerable infection probabilities and have a higher potential to spread among people. These conclusions are supported by the systematic evaluation of IAQ control strategies using the described models and assumptions.	
Shinohara et al., 2024 (59)	The study implicitly focuses on passengers of commuter trains in Tokyo, a densely populated urban environment where public transportation is heavily utilized. However, the description of the population is not explicitly detailed in terms of demographics, health status, or behavior patterns (e.g., mask-wearing habits, duration of travel). The interventions evaluated in the study are well-described and relevant to the context of public transportation during a pandemic. The study	The study employs a two-zone model to estimate the concentration of the virus to which a passenger in a commuter train is exposed, distinguishing between near- field and far-field exposures. This model is appropriate for the study's aim to assess airborne transmission risk in a commuter train environment, considering the spatial distribution of passengers and the airflow dynamics within the train cars. The use of a two-zone model is consistent with methodologies in environmental health research that require differentiation between closer proximity	The study clearly outlines several assumptions made within the model. These include the assumption that passengers in both the near- field and far-field are exposed to virus contained in droplet nuclei originating from an infected person, and that near-fields do not overlap with each other to simplify the calculation. Additionally, it assumes the air completely mixed in the near-field exchanges with the air completely mixed in the far-field.	The study provides the formula used in the two-zone model to express the concentration dynamics in the near- field, incorporating elements such as emission and flow volume rates. However, while the study mentions the use of the two-zone model and provides a general description of its application, the detailed mathematical representation of the model, including all variables and parameters for both near-field and far- field calculations, is not fully detailed.	The study concludes that no previous research has evaluated the risk reduction for COVID-19 associated with improved ventilation and window-opening in vehicles, and it aims to fill this gap by determining air exchange rates under several conditions in commuter train cars. The methodology, involving the measurement of air exchange rates and the estimation of airborne infection risk under varying conditions, directly supports the study's objectives. The results and conclusions presented by the authors appear to be consistent with	Moderate

Study	Description of the population and the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interventions is complete and appropriate	appropriate				
	examines the effects of opening windows and using air conditioning or fans on the air exchange rates and, consequently, on the risk of airborne transmission of COVID- 19. These interventions are practical and can be easily implemented in the real- world setting of commuter trains.	(near-field) and farther proximity (far-field) to a source of airborne particles or pathogens. objectives are adequately provided.			the methodologies and assumptions described	
Schibuola & Tambani, 2021 (60)	While the study mentions high-density indoor environments and public transportation buildings as the primary focus, it does not provide specific details about the characteristics of these environments (e.g., size, typical occupancy levels, ventilation systems in place). A more detailed description of these environments could help in understanding the generalizability of the study's findings. The study provides a clear overview of the interventions being evaluated, namely the three ventilation strategies and the implementation of the hardware prototype for occupant detection.	The study employs the Wells- Riley model for evaluating the infection risk in public transportation buildings, incorporating parameters such as the probability of infection, breathing rate, quantum generation rate, and exposure time. This model is appropriate for the study's aim.	The authors have published the assumptions of the Wells-Riley model, including specific parameter values. The exposure time is estimated based on common experience, with different durations considered for airport terminals and train stations.	The study references the Wells-Riley equation and provides details on how the probability of infection is calculated. While the exact equations are not explicitly included in the provided excerpts, the references to specific equations and the parameters involved suggest that the formulas associated with the model are acknowledged and utilized in the analysis.	The findings are consistent with the study's objectives of mitigating infection risk and saving energy. The authors also acknowledge limitations such as the potential for occlusion in camera-based detection and the case- dependent nature of parameters in the Wells-Riley model, suggesting further adjustments to the ventilation rate might be necessary in practice to secure a lower infection probability. The acknowledgment of limitations and the presentation of results that align with the study's goals indicate a consistent and logical conclusion based on the methodology and data presented.	Moderate
Srivastava, 2021 (61)	The summaries do not provide detailed demographic information about the susceptible population (e.g., age, health status, or density of occupants) which could	The description of the model used for assessing the infection risk of SARS-CoV-2 in a large office building appears to be both complete and appropriate. The studies employ Computational Fluid	The studies have published key assumptions of the model. For instance, they assume a simplified rectangular column to represent an occupant due to computational	The studies mention the use of the Wells-Riley equation for assessing infection risk, and the Eulerian method for the spatial distribution of the virus. However, the specific formulas associated with these methods, including the discretized equations	The results and conclusions presented by the authors appear to be consistent with the methodologies and assumptions described. They explore the effect of air disinfection devices on	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	influence the generalizability of the findings. Additionally, while the interventions are described in terms of their general approach (ventilation and UV-C disinfection), specifics regarding the implementation of these strategies (e.g., ventilation rates, placement, and number of UV-C units) are not detailed in the provided text. Such specifics are crucial for understanding the feasibility and potential impact of these interventions in real-world settings.	Dynamics (CFD) to calculate spatial distributions of airflow, air temperature, and SARS- CoV-2 concentration, using the Reynolds-averaged Navier-Stokes (RANS) equations closed with the RNG k-€ model, which is noted for its performance in indoor airflow simulations. Additionally, the Eulerian method is used for predicting the spatial distribution of the SARS-CoV-2 virus, which is appropriate for treating the particle phase as a continuum phase. The Wells-Riley equation is then applied to evaluate the spatial distribution of the infection risk.	constraints, a method validated by previous studies. The quanta value used for SARS-CoV-2 is based on prior data, acknowledging that future studies could reassess infection risk with updated quanta values. These assumptions are critical for understanding the model's limitations and the context in which the findings are applicable.	solved with the SIMPLE algorithm and the Boussinesq approximation for simulating buoyancy effects, are referenced rather than explicitly published in the provided text. This approach is common in scientific literature due to space constraints but may require readers to consult the referenced sources for detailed mathematical formulations.	reducing infection probability, finding that the use of RM3 UV-C units could effectively lower the infection risk to below 2% in certain scenarios.	
Stabile, 2021(62)	The description of the population and interventions seems adequately tailored to the context of classrooms during pandemics, focusing on scenarios typically occurring in such environments. However, the methodology does not presume to cover all possible situations or mitigation solutions, such as the use of more efficient masks, air purifiers, or intermittent occupancy, which could further reduce transmission risk.	The description of the model used in the study appears to be complete and appropriate for the intended application. The methodology involves calculating the required air exchange rates (AER) and airing procedures to maintain an acceptable level of virus transmission risk in classrooms, using virus and CO2 mass balance equations. This approach considers particle deposition, virus inactivation phenomena, and dynamic scenarios within a 5- hour school day. Two different viruses, SARS-CoV- 2 and seasonal influenza, were considered under the assumption of airborne transmission only, excluding	The study published its assumptions, including the simplified hypothesis that viruses and CO2 are instantaneously and evenly distributed within the confined space (box-model). It also assumes that the students are adequately spaced to neglect the ballistic deposition of large respiratory particles onto mucous membranes, focusing solely on airborne transmission.	While the study references virus and CO2 mass balance equations and mentions the calculation of air exchange rates and airing procedures, it does not explicitly publish all the formulas associated with the model within the provided text. The authors note that the quanta emission model and its parameters, crucial for evaluating the virus transmission potential, are described in previous papers and not reported in detail for brevity.	The results and conclusions presented by the authors are consistent with the methodology and objectives of the study. They provide a method to support regulatory authorities in safely operating schools during pandemics by assessing required ventilation for both mechanically- and naturally ventilated classrooms. The study acknowledges the complexity of the uncertainty budget of the event reproduction number (Revent) and suggests that further studies are needed for experimental validation and improvement of the virus transmission potential quantification for different ventilation systems.	Moderate

Study	Description of the population and the interventions is complete and	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	appropriate					
	uppropriate	symptomatic behaviors like frequent coughing or sneezing. The model also incorporates a feedback control strategy for naturally ventilated classrooms based on exhaled CO2 monitoring.				
Takahashi,2023 (63)	The study does not provide explicit details about the demographic characteristics of the student population (e.g., age, grade level) or the specific type of schools (e.g., elementary, high school) being simulated. While the focus is on the general school environment, the lack of detailed population description might limit the applicability of the findings to specific school settings or age groups. The description of the interventions is adequately detailed, providing clear insights into the two main strategies evaluated: increasing classroom ventilation rates and customizing school schedules.	The description of the School Virus Infection Simulation Model (SVISM) appears to be both complete and appropriate for the study's objectives. SVISM is an agent- based model designed to simulate the spread of virus infection within a school setting, considering various factors such as the number of students, classroom sizes, air conditioner performance, and school schedules. The model's capability to simulate different school scheduling scenarios and its focus on internal school factors, as highlighted by UNESCO, suggest a comprehensive approach to understanding COVID-19 spread in schools.	The study does publish some of the assumptions of the model. For instance, it assumes that the external factors influencing virus spread can be represented by the number of students infected outside the school per unit time. It also assumes the average time from exposure to COVID- 19 to the onset of symptoms, which influences the scheduling scenarios simulated by the model.	The study does publish formulas associated with the model, particularly the use of the Wells–Riley equation to calculate the basic reproduction number of the infection and the probability of infection for each susceptible student. This inclusion of specific formulas provides a mathematical foundation for the model's simulation of virus spread, allowing for a more detailed understanding of how infection risks are calculated within the simulated school environments.	The results and conclusions drawn by the authors seem consistent with the objectives and capabilities of the SVISM. The model's application to simulate various school scheduling scenarios and its evaluation of interventions like changing classroom volumes and air change rates demonstrate its utility in planning for reduced infection probabilities without significant resource investments. The study's focus on the internal factors of schools and the simulation of specific interventions aligns with the identified need for school schedule plans that maintain face-to-face classes while minimizing COVID-19 spread. The consistency between the model's capabilities, the simulated interventions, and the study's conclusions suggests a logical and coherent research	Moderate
Tognon et al.,	The description of the	The description of the model	The authors have published	The study provides specific formulas	The results and conclusions	Moderate
2023 (64)	population and the	used in the study is both	the assumptions of the	associated with the model, particularly	presented by the authors are	
	interventions evaluated in the study appears to be	complete and appropriate.	model, which are crucial for	in the context of evaluating infection	consistent with the	
	adequately detailed for the	coupling process between	and limitations of the	estimate airborne infection risk with the	described in the study. They	
	purpose of the research.	TRNSYS and CONTAM for	simulation results. These	formula for calculating the intake dose	analyze the effect of different	
	The study specifically	dynamic simulation building	include the thermal	based on quanta concentration over	control strategies on the	

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	focuses on two types of buildings: a residential building and a school classroom. This choice of settings is relevant as it represents common environments where people spend significant amounts of time, thus making the findings applicable to a wide audience concerned with indoor air quality and energy efficiency. However, the description could be enhanced by providing more details about the specific characteristics of the buildings modeled (e.g., size, occupancy, location) and the exact nature of the control strategies tested (e.g., thresholds for switching between natural and mechanical ventilation, specific conditions under which each mode is preferred). Such details would offer a clearer understanding of the interventions' applicability and potential limitations in real-world settings.	modeling, employing a multi- zonal approach to accurately represent the building spaces. TRNSYS is used for dynamic energy simulation, determining net energy demand for heating and cooling, while CONTAM models' multi-zonal ventilation to calculate natural ventilation to calculate natural ventilation flows and air couplings. The case studies—a residential apartment and a school classroom—are described with sufficient detail, including their geometrical characteristics and thermal transmittances, providing a clear understanding of the model's scope and application.	transmittances of external walls and roof covering slabs, the assumption of adiabatic walls separating conditioned spaces, and the internal heat gains from people, appliances, and lights based on European Standard EN 16798:2019. Additionally, the airflow network model for natural ventilation and the transient thermal model assumptions are clearly stated, including the representation of doors and airflow paths through gaps. These assumptions are essential for replicating the study or applying its findings to similar contexts.	exposure time clearly presented. This formula incorporates the breathing flow rate of a susceptible person and the emission rate of COVID-19 quanta, which are critical for assessing the risk of airborne infection in the simulated environments. The inclusion of these formulas enhances the transparency and scientific rigor of the study.	operation of natural and mechanical ventilation, energy demand, electrical absorption by fans, and infection risk extent. The consistency between the study's results and conclusions is well- established, with the findings logically supporting the authors' assertion that well- regulated natural ventilation through a suitable control strategy is beneficial for both energy savings and risk mitigation in hybrid ventilation systems.	
Wang et al., 2021 (65)	While the study mentions high-density indoor environments and public transportation buildings as the primary focus, it does not provide specific details about the characteristics of these environments (e.g., size, typical occupancy	The study employs the Wells- Riley model for evaluating the infection risk in public transportation buildings, incorporating parameters such as the probability of infection, breathing rate, quantum generation rate, and exposure time.	The authors have published the assumptions of the Wells-Riley model, including specific parameter values. The exposure time is estimated based on common experience, with different durations	The study references the Wells-Riley equation and provides details on how the probability of infection is calculated. While the exact equations are not explicitly included, the references to specific equations and the parameters involved suggest that the formulas associated with the model are	The findings are consistent with the study's objectives of mitigating infection risk and saving energy. The authors also acknowledge limitations such as the potential for occlusion in camera-based detection and the case- dependent nature of	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	levels, ventilation systems in place). A more detailed description of these environments could help in understanding the generalizability of the study's findings. Intervention Details: The study provides a clear overview of the interventions being evaluated, namely the three ventilation strategies and the implementation of the hardware prototype for occupant detection.		considered for airport terminals and train stations.	acknowledged and utilized in the analysis.	parameters in the Wells-Riley model, suggesting further adjustments to the ventilation rate might be necessary in practice to secure a lower infection probability. The acknowledgment of limitations and the presentation of results that align with the study's goals indicate a consistent and logical.	
Xu et al., 2023 (66)	The description of the population is adequate in the context of the study's focus on U.S. primary schools, providing a clear understanding of the target group for which the trade- off analysis is relevant. However, the interventions to be evaluated, while described in terms of the environment factors to be regulated, could benefit from a more detailed explanation of the specific control strategies and their practical operation ranges. This would enhance the clarity of the interventions' scope and applicability in real-world settings.	The description of the model used in the study is comprehensive and appropriate for the objectives outlined. The study employs a revised Wells-Riley model to simulate airborne transmission, addressing the limitations of current models by considering changes in occupancy and indoor environmental conditions, which are crucial for accurately depicting real-world scenarios in school buildings. Additionally, the Department of Energy (DOE) reference building model is utilized for simulating energy consumption and thermal comfort, tailored to represent a significant portion of the U.S. commercial building stock and modified according to specific standards.	While the study mentions the use of the Wells-Riley and DOE reference building models, it does not explicitly detail all the assumptions inherent in these models within the provided excerpts. For instance, the Wells-Riley model's assumptions about confined space and constant occupancy and environmental conditions are briefly critiqued, suggesting modifications for the study.	The study does not explicitly publish the formulas associated with the revised Wells-Riley model or the DOE reference building model in the provided excerpts. While it mentions the use of these models for simulating airborne transmission, energy consumption, and thermal comfort, specific equations or formulas used in these simulations are not detailed.	The results and conclusions presented by the authors appear to be consistent with the objectives and methodology of their study. These results are consistent with the study's aim to explore the interdependent nature of these factors in building operations. Furthermore, the authors acknowledge several limitations of their study, including its focus on a one- year period and the reliance on simulations of a reference building model, which may not fully capture the complexities of actual situations. Despite these limitations, the study concludes that variations in the set values of environment factors can significantly impact health, energy consumption, and thermal comfort, underscoring the	Moderate

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
					importance of considering these tradeoffs in school building operations.	
Xu et al., 2021 (67)	The description of the population and the interventions evaluated in the study appears to be adequately detailed and relevant for the objectives of the research. The focus on U.S. schools provides a clear context for the study, and the nationwide scope ensures that the findings are applicable across a wide range of educational settings. The interventions evaluated are well-chosen, reflecting practical and widely discussed strategies for reducing airborne infection risk in schools. The detailed assessment of these interventions, including the specific mention of MERV 13 filters and the quantification of their effectiveness, provides valuable insights for schools and policymakers.	The description of the model used in the study is comprehensive and appropriate for assessing the airborne infection risk of COVID-19 in U.S. schools. The study employs the Gammaitoni-Nucci (G-N) equation, a variation of the Wells-Riley equation, which is widely adopted for indoor airborne infection risk assessment. This model is suitable for evaluating the risk of airborne diseases like influenza, tuberculosis, and SARS-CoV-2 in indoor environments, including schools. The methodology also incorporates a one-year pandemic scenario to estimate the nationwide prevalence of SARS-CoV-2, considering factors like seasonal variation, duration of immunity, and cross-immunity from other coronaviruses.	The study has published the key assumptions of the model, including the baseline ventilation rate, the height of classrooms, and the number of hours in a typical school day. It also assumes a well-mixed condition of infectious particles throughout the school building, which simplifies the national assessment of school infection risks. However, it acknowledges limitations such as the simplification of particle mixing and the exclusion of room or building separation in schools. While the study outlines several assumptions, it may not exhaustively list all underlying assumptions, such as specific behavioral patterns of students that could affect transmission dynamics.	The study has published the formulas associated with the model, including the G-N equation for calculating infection risk and the equations for estimating variables such as the infection risk, ventilation rate, and the infectiousness parameter for SARS-CoV-2. These formulas are crucial for understanding how the study quantifies infection risk and evaluates the impact of different parameters on this risk.	The results and conclusions of the study appear to be consistent with the methodology and findings presented. The study identifies air filtration as an effective strategy for reducing infection risk, based on the modeling of various intervention strategies and their impact on infection risk. It also conducts sensitivity analysis and Monte Carlo Simulations (MCS) to account for uncertainties in key parameters, which supports the robustness of the findings.	High
Xie et al., 2024 (68)	The description of the population and the interventions to be evaluated appears to be adequate. The study covers a comprehensive sample of 111,485 public and private schools across the U.S., providing a broad and representative analysis of the school environment during the COVID-19	The description of the model used in the study appears to be complete and appropriate for assessing the risk of airborne transmission of SARS-CoV-2 in schools. The study employs the Gammaitoni – Nucci (G-N) equation, a variation of the Wells-Riley equation, which is widely adopted for indoor	The authors have published the assumptions of their model, including the use of a one-year pandemic scenario with moderate seasonal forcing, an immunity duration of 10 weeks, and no cross- immunity between SARS- CoV-2 and other coronaviruses.	The study published the formulas associated with the model, including the calculation of infection risk based on the school population and the prevalence of COVID-19, as well as the variables for occupant density, exposure time, and the effect of introducing and circulating fresh air in the building.	The results and conclusions of the authors are consistent with the methodology and analysis presented. The study conducted a sensitivity analysis to quantify the influence of various factors on infection risk and used Monte Carlo Simulation (MCS) to model the impact of parameter uncertainties. The findings regarding the	High

Study	Description of the population and the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interventions is	appropriate				
	complete and					
	appropriate	airborne infection risk			affectiveness of different	
	interventions evaluated	andonne infection fisk			intervention strategies under	
	ventilation improvements	assessment.			various sceparios are based	
	filtration and hybrid				on the described model and	
	learning—are relevant and				its assumptions providing a	
	practical measures that				coherent and logical	
	schools can implement to				conclusion to the study's	
	mitigate airborne infection				objectives.	
	risk. The inclusion of				,	
	combined strategies also					
	allows for an assessment of					
	the synergistic effects of					
	multiple interventions,					
	offering schools flexible					
	options based on their					
	specific circumstances and					
N/ 1 2022	capacities.		xx771 '1 1 1 1' 1			
Yan et al., 2022	The population in question	The description of the model	While the study outlines the	The study references the Wells-Riley	The results and conclusions	Moderate
(69)	is occupants of a large	used in the study is both	general approach and	equation. This equation is mentioned in	presented in the study appear	
	ornice building, a common	The study employe the	there is a lack of explicit	the context of explaining the concept of	to be consistent with the	
	mitigation strategies are	CONTAM model enhanced	detail regarding all the	The authors published the formulas	the analysis conducted. The	
	crucial The interventions	with the "CONTAM-quanta"	assumptions made within	associated with the model. For instance	study concludes that the best	
	evaluated are	approach to estimate airborne	the model. The Wells-Riley	they provided the air mass balance	strategy to keep the risk of	
	comprehensive, covering a	virus transmission in terms of	equation and the concept of	equation to detail the equivalent	infection propagation low.	
	range of mechanical and	quanta and calculate the	quanta are mentioned, and	removal efficiencies used in a building	without universal masking, is	
	behavioral strategies that	probability of infection for	the study acknowledges	to reduce the aerosol concentration and	the operation of in-room	
	can be implemented in	SARS-CoV-2. This approach	uncertainties in estimating	thus exposure. Additionally, they	GUV or a large industrial-	
	similar settings. The study's	is based on the Wells-Riley	the quanta generation rate	presented the formula for the time-	sized PAC. With masking, all	
	focus on a DOE prototype	model, which is a well-	for SARS-CoV-2 under	change rate. These formulas are crucial	strategies were deemed	
	office building provides a	established method for	different conditions.	for understanding the model's approach	acceptable. These conclusions	
	specific context that helps	evaluating airborne exposure		to estimating airborne virus	are consistent with the study's	
	in understanding the	risks. The study further		transmission and evaluating mitigation	objective to evaluate different	
	applicability and	extends the model's		strategies.	mitigation strategies.	
	effectiveness of the	application to a multizone				
	proposed mitigation	building environment,				
	strategies in a real-world	allowing for detailed analysis				
	scenario.	of airborne transmission risks				
		building				
Vuce et al. 2022	The population in this	The description of the model	The studies have published	The studies outline the use of the	The results and conclusions	Moderato
(70)	case is represented by a	used in the studies appears to	several assumptions related	Taguchi method and the Wells-Riley	of the study are consistent	mouerate
(19)	thermal manikin within an	be both complete and	to the model. For instance.	method for risk assessment. The	The study systematically	

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	office room environment, which serves as a proxy for human presence. However, the studies do not explicitly describe the characteristics of the human population that might occupy such an office room, such as the number of occupants, their activity levels, or their susceptibility to infection. The interventions evaluated include various ventilation parameters such as inlet velocity, inlet temperature, inlet-outlet heights, and room dimensions. The studies provide a clear description of these interventions and their optimization to minimize pathogen transmission.	appropriate for the objectives set forth. The studies detail the dimensions of the office room, the positions of the inlet and outlet, the use of a thermal manikin to simulate human presence, and the inclusion of office furniture like a desk and computer. The use of Computational Fluid Dynamics (CFD) simulations, along with the Taguchi method for optimization, is well-documented. The studies also mention the use of standard k-e turbulence models with enhanced wall treatment to accurately capture turbulent flow, and the Boussinesq model for buoyancy-driven flow.	the use of CO2 as a tracer gas to model airborne transmission of pathogens assumes that smaller particles behave similarly to tracer gases in airflow patterns. The simplification of boundary conditions and the specific modeling of only the mouth for cross- infection studies are explicitly mentioned.	Taguchi method's calculation procedure, including the establishment of an orthogonal array, computation of signal-to-noise (S/N) ratios, derivation of delta values, and determination of factor order, is described. The Wells- Riley method is mentioned, but specific formulas associated with these methods or the CFD simulations (e.g., equations for airflow, contaminant dispersion) are not detailed.	investigated the impact of various ventilation parameters on pathogen transmission and concentration in indoor environments. Overall, the study maintains a consistent narrative from its objectives through to its conclusions, effectively linking its findings with its stated goals and providing a coherent understanding of the impact of ventilation parameters on indoor pathogen transmission.	
Zafari et al., 2022 (71)	The description of the population and the interventions evaluated appears to be somewhat limited. While the study acknowledges the complexity of factors influencing the transmission of SARS- CoV-2, including the characteristics of the population (e.g., age, gender, race, comorbidity, socioeconomic status), it primarily focuses on the aspect of airborne transmission in indoor spaces without a detailed exploration of these	The description of the model appears to be complete and appropriate for the study's objectives. The model inputs, including the mean year-round prevalence of actively infectious cases in the surrounding community and the proportion of patrons that are vaccinated, are clearly defined. The model also accounts for the temporal evolution of the concentration of viable viral copies in an indoor space under well- mixed conditions, considering the movement of people and airflow patterns.	The authors have published the assumptions of the model, which include the average days of infectiousness for an exposed individual, the assumption of well-mixed conditions in an indoor space, and the behavior of symptomatic COVID-19 cases in terms of quarantine.	While the methodology section and the description of the model inputs and assumptions are detailed, the specific mathematical or computational formulas used to calculate the outcomes (e.g., infections averted, incremental costs, QALYs) are not directly cited.	The results and conclusions presented by the authors appear to be consistent with the objectives and methodology of the study. The model outcomes, including infections averted, incremental costs, and QALYs, are clearly reported for different scenarios (base- case, best-case, and worst- case). The authors' conclusions are supported by the results of the sensitivity analyses and the robustness of the model.	Moderate

Study	Description of the population and the interventions is	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	complete and					
Zafarnejad, 7 2021 (72)	complete and appropriate oppulation characteristics. The interventions evaluated, such as mprovements in ventilation, are discussed in the context of their potential to reduce airborne transmission, but the specific characteristics of the population that might be affected by these interventions are not thoroughly described. The description of the population focuses on student demographics and behavioral factors that influence compliance with COVID-19 regulations in a classroom setting. While the summary mentions these factors, it does not provide detailed information on the demographic characteristics of the student population The interventions evaluated in the studies are well-described and relevant to the context of reducing COVID-19 transmission in classroom settings. The interventions include both policy measures (e.g., class schedule adjustments, surveillance testing, contact tracing) and physical measures (e.g., social distancing,	The description of the model appears to be both complete and appropriate for the study's objectives. The model incorporates agent-based simulation to evaluate the spread of SARS-CoV-2 in classroom settings, considering factors such as classroom size, layout, and the behavior of students with respect to guideline compliance. It extends traditional transmission models by including the local spread of quanta from a contagious source and accounts for the behavior of students regarding guideline adherence. This comprehensive approach, which integrates both particle and interpersonal levels of transmission risk estimation, is suitable for assessing the impact of various non- pharmaceutical interventions	The authors have published the assumptions of the model, which are crucial for understanding the context and limitations of the simulation. These assumptions include the presence of at least one infected student in the classroom to address the patient zero problem, the effectiveness of masks in providing protection against droplets, and the behavior of students in terms of attending classes while experiencing mild symptoms. Additionally, the model assumes randomized seating in the classroom and does not account for the movement of agents, which could affect transmission dynamics. By disclosing these assumptions, the authors enable readers to gauge the model's	While the authors discuss the methodology and assumptions behind their model, the specific formulas associated with the model are not detailed. The description focuses on the conceptual framework and the factors considered in the simulation, such as classroom layout, student behavior, and intervention strategies. For a thorough evaluation of the model's scientific rigor, access to the detailed mathematical formulas and computational algorithms would be necessary. However, the summary indicates that the source code and related information are available online, which suggests that interested readers can access the technical details of the model.	The results and conclusions presented by the authors appear to be consistent with the objectives and methodology of the study. They found that traditional transmission models tend to underestimate infection rates compared to their approach, which considers the local spread of quanta and behavioral factors.	Moderate
V T a	ventilation improvements). This comprehensive approach allows for a	in educational settings.	applicability and potential limitations in real-world scenarios.			

Study	Description of the population and the	Description of the model to be used is complete and	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	interventions is	appropriate				
	appropriate					
	nuanced understanding of					
	how different strategies					
	can contribute to reducing					
	transmission risk. The					
	description of					
	interventions is adequate					
	for understanding the					
	scope of the study and the					
	potential impact of various					
	measures on COVID-19					
Zand 2023(73)	The description of the	The description of the model	While the study provides a	The authors have published the formula	The results and conclusions	Moderate
$Z_{and}, 2025(75)$	population and the	used in the study appears to	detailed methodology for	used to estimate ACH which involves	presented by the authors	Moderate
	interventions to be	be complete and appropriate	estimating ACH and	dividing the room volume by 4 and	appear to be consistent with	
	evaluated is adequately	for the objectives outlined.	mentions the use of specific	applying the NonlinearModelFit	the methodology and data	
	detailed, providing a clear	The authors employed the	algorithms and functions, it	function to CO2 time series data. They	analysis employed in the	
	understanding of the	NonlinearModelFit function	does not explicitly detail all	also describe the process of identifying	study. They sampled 100	
	study's scope and the	in Mathematica with the	the assumptions inherent in	peaks and valleys in CO2 levels and	rooms across three buildings	
	specific measures under	Levenberg-Marquardt	the model used. For	fitting Equation 1 to these data points	with varying HVAC systems	
	investigation. The focus on	algorithm option to estimate	instance, assumptions	to estimate ACH. This level of detail	and assessed the impact of	
	a vulnerable population	the room airflow needed to	regarding the uniformity of	provides a clear understanding of how	ventilation, among other	
	within a specialized school	achieve 4 air changes per hour	air mixing within the rooms	ACH estimates were derived, which is	mitigation measures, on	
	setting adds a valuable	(ACH), based on the volume	or the impact of occupancy	crucial for replicating the study or	SARS-CoV-2 transmission.	
	dimension to the research,	of the room. This approach is	and room usage patterns on	applying its methodology in similar	The analysis showed a	
	often underrepresented in	pature of airflow dynamics	estimations are not explicitly	research	ACH or reduced exposure to	
	studies of this pature. The	and the need for precise	stated		high CO2 levels and lower	
	comprehensive detailing of	estimation of ACH to assess	stated.		incidence of positive SARS-	
	the interventions.	ventilation effectiveness in			CoV-2 PCR tests, supporting	
	particularly the emphasis	mitigating SARS-CoV-2			the hypothesis that improved	
	on ventilation	transmission. The use of curve			ventilation can mitigate virus	
	improvements and the	fitting to estimate ACH from			transmission in school	
	specific characteristics of	CO2 time series data further			settings.	
	the HVAC systems, allows	supports the appropriateness				
	for a nuanced	of the model for the study's				
	understanding of the	aims.				
	potential impact of these					
	spread of SARS CoV 2					
Zheng 2021	The study primarily	The description of the model	The study published the	The authors published the formulas	The results and conclusions	High
(74)	focuses on the physical	used in the study is both	assumptions of the model	associated with the model including the	of the authors appear to be	ingn
(79	aspects of building design	complete and appropriate.	including the adoption of a	general form of time-averaged	consistent with the	
	(i.e., the presence and	The authors provide detailed	1:15 reduced scale for the	governing equations for incompressible	methodology and the data	

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
	positioning of shading louvers) and its impact on airflow and pollutant dispersion. As such, it does not directly involve human subjects or populations in the traditional sense. Instead, the "population" in this context refers to the simulated environment of a multi-storey building and its units. The interventions evaluated are the configurations of shading louvers on the building's exterior. The study investigates how different placements (windward vs. leeward) and the presence of these louvers affect ventilation, pollutant dispersion, and the potential risk of airborne infection transmission within the building.	information about the geometric model of a multi- storey building with external louvers, specifying dimensions and configurations for both shaded and non-shaded cases. They also describe the computational domain and boundary conditions, ensuring the model's relevance to real- world scenarios. The selection of the realizable k-€ turbulence model is justified with references to its agreement with experimental data and its suitability for investigating airflow characteristics and pollutant dispersion around buildings with facade components.	building, the simplification of airflow connections between units, and the specific configurations of the louvers. The boundary conditions and the computational domain's specifications are based on practical guidelines and standards to simulate airflow characteristics accurately. The use of steady Reynolds- averaged Navier-Stokes equations (RANS) for incompressible flow is mentioned, which balances accuracy and computational consumption. These assumptions are crucial for understanding the model's limitations and the context in which the results are valid.	flow and the discretization method using the finite volume method (FVM). The selection of turbulence models and the rationale behind choosing the realizable k-¢ model over others are discussed, with references to its effectiveness in capturing airflow and pollutant dispersion. This transparency in sharing the mathematical foundation of the model enhances the study's credibility.	presented. The study validates the CFD methods with wind-tunnel experiments and experimental measurements of airflow velocity at openings, ensuring that the model accurately predicts airflow exchange and tracer gas concentration in a shaded building. The solver settings and convergence criteria are clearly defined, supporting the reliability of the simulation results.	

Study	Description of the population and the interventions is complete and appropriate	Description of the model to be used is complete and appropriate	Published Assumptions of the Model	Published Formulas Associated with the Model	Results and Conclusions Consistency	Confidence
Tapia-Brito, 2023	The description of the population is notably absent. The study does not specify the indoor environments or the target population where the MopFan system was tested. For a comprehensive evaluation, it would be essential to know details such as the size of the rooms, the typical pollutant levels, the presence of individuals with respiratory issues, or any specific characteristics of the households that could influence the effectiveness of the air purification system. In conclusion, while the interventions are well-described and the methodology appears robust in terms of developing and testing the air purifying system, the lack of detailed information about the population and the specific indoor environments tested limits the ability to fully evaluate the applicability and effectiveness of the MopFan in real- world settings. Future work should include detailed descriptions of the testing environments.	The description of the model used in the study is detailed and appears appropriate for the objectives set forth. The study employs Computational Fluid Dynamics (CFD) simulations to understand the flow characteristics within the air purifying device, using ANSYS Fluent R2021 and applying different turbulent models, with the RNG k-e chosen for good convergence. The model aims to analyze the effect of stationary versus rotating brushes on air flow and pollutant distribution within the device.	The study mentions the use of turbulent models and the specific setting of convergence criteria (set as 10 ^{^-6} for continuity, conservation of momentum, and turbulent equations). However, while it indicates the application of these models and criteria, it does not fully detail all assumptions underlying the model, such as assumptions about the physical properties of the air, the specific characteristics of the pollutants, or the indoor environment conditions during simulations. Without these assumptions being explicitly published, it's challenging to fully assess the model's applicability and limitations.	The study references the governing equations related to the simulations found in another reference. While it indicates that these equations are foundational to the CFD simulations conducted, the direct formulas associated with the model, such as those governing the photocatalytic purification reaction or the specifics of the turbulent models applied, are not provided within the text. This omission makes it difficult to fully evaluate the mathematical underpinnings of the model and its implementation.	The results, as presented, demonstrate the effectiveness of the MopFan design in reducing VOCs and formaldehyde using different materials and compare the performance of static versus spinning brushes. The study also discusses the potential for energy savings and lower operating costs through optimized filter geometry. These outcomes align with the study's objectives to find the optimal MopFan configuration and improve air purifier efficiency. However, without full visibility into the model's assumptions and the specific formulas used, there's a limitation in assessing the direct linkage between.	Low

A rimandi 2022 The study primarily for severe and the	The description of the model.	While the study provides -	The execute do not ano-1-	The regults and sensitive f	Low
Arginanci, 2022 The study primarily focuses on the	used in the study is both	detailed description of the model	and the excerpts do not provide	the study appear to be consistent	LOW
technical aspects of ventilation	used in the study is both	detailed description of the model	specific formulas associated	with the chieve and	
system design and optimization	complete and appropriate. The	setup and validation process, it	with the CFD model, such as	with the objectives and	
within a classroom environment,	study employs Computational	does not explicitly list all the	those governing the motion of	methodology described. The	
aiming to reduce the transmission of	Fluid Dynamics (CFD)	assumptions made during the	particles, fluid dynamics	study aimed to evaluate different	
airborne pathogens. While the	simulations using the Reynolds	modeling process in the provided	equations, or the specific	ventilation strategies in a	
methodology is detailed in terms of	Averaged Navier Stokes (RANS)	excerpts. CFD studies typically	equations used for the	classroom setting to minimize the	
the technical processes and	approach, with geometry and	involve assumptions related to	optimization process. While the	risk of infectious exposure and	
simulations involved, there is a lack	mesh created in ANSYS Design	boundary conditions, turbulence	study mentions the use of the	improve thermal comfort. By	
of specific description regarding the	Modeler and ANSYS Meshing,	models, and properties of the	RANS approach and the	employing CFD simulations,	
population that would benefit from	respectively. A grid sensitivity	fluid and particles. Although the	validation of the model against	conducting a grid sensitivity	
these interventions. The study	study was conducted to ensure	methodology section outlines the	experimental data, detailed	study, and optimizing the	
implicitly targets students and staff	the accuracy of the simulations,	approach and validation, a	formulas and mathematical	ventilation system using DOE.	
within educational institutions by	and the commercial CFD code	comprehensive list of	expressions directly associated		
focusing on classroom settings, but it	ANSYS Fluent 2020 R3 was	assumptions inherent to the CFD	with the model's governing		
does not explicitly describe this	utilized for analysis. The model	model and the specific conditions	equations and optimization		
population or their specific	was validated against	of the simulations (e.g.,	techniques are not included in		
characteristics (e.g., age, health	measurements from an	assumptions about particle	the provided text. The study		
status).	experimental study, ensuring its	behavior, air properties) is not	does mention employing a		
	reliability.	explicitly provided in the cited	Design of Experiment (DOE)		
Similarly the interventions	-	text.	procedure and the response		
evaluatedpamely_the different			surface method (RSM) for		
configurations of ventilation			optimization, but without		
systems are described in terms of			presenting the specific formulas.		
their technical specifications					
then technical specifications.					

	1	1		1	1	
Khan, 2021	The description of the population involved in the study is minimal, mentioning only that the study was conducted in an occupied home with three occupants. There is no detailed information about the occupants (e.g., age, health status, or activity patterns), which could influence the generalizability of the findings. Understanding the characteristics of the occupants is crucial, as their behavior and presence could affect indoor air quality and the effectiveness of the tested interventions. The description of the interventions is adequately detailed, providing clear information on the different strategies tested for containing airborne contaminants. In summary, while the description of the interventions is thorough and provides a solid foundation for understanding the study's approach to evaluating indoor air quality and containment strategies, the description of the population is lacking in detail. This omission could limit the applicability of the findings to broader populations or different living environments. Future studies could benefit from a more comprehensive	The methodology section provides a detailed description of the interventions and the primary metric used to evaluate the containment effectiveness of various ventilation strategies in a home setting. The use of smoke generated PM2.5 as a marker for virus transmission potential within the isolation zone is clearly explained, along with the rationale for selecting PM2.5 as a surrogate marker. This detailed description of the test setup and the metrics used for evaluation suggests that the model description is complete and appropriate for the study's objectives.	The study implicitly assumes that PM2.5 can act as a carrier for viruses like SARS-CoV-2 and that managing the concentration and movement of PM2.5 within indoor environments can help in controlling virus transmission. While the study mentions the use of PM2.5 as a marker and references the potential for airborne particles to play a significant role in respiratory virus transmission, it does not explicitly list all assumptions related to the model's application to virus containment. Therefore, it appears that not all assumptions of the model are fully published or detailed.	The provided excerpts do not explicitly mention, or detail specific formulas associated with the model used to evaluate the interventions. The study focuses on the practical application of various ventilation strategies and their impact on differential pressure and PM2.5 concentrations rather than mathematical modeling or the use of specific formulas to predict outcomes. Therefore, it seems that the publication does not provide formulas associated with the model.	The study's conclusions about the effectiveness of different ventilation strategies in containing PM2.5 within the IZ are based on observed differential pressures and PM2.5 concentration measurements. The findings that certain configurations were unable to create the desired depressurization in the IZ under specific conditions are directly linked to the measured outcomes and the established criteria for containment effectiveness (e.g., ASHRAE Standard 170's pressure differential requirement). This suggests that the results and the authors' conclusions are consistent with the methodology employed and the data collected during the study.	Low

71 2020		The description of the model.		Delalista di Elemento di Anna siste di	The Continue on a second start and	Ι
Znu, 2020	The study's population appears to be	The description of the multi-	The text does not explicitly detail	Published Formulas Associated	the study of a biostice and the	Low
	college students residing in two	zone models used for the	all the assumptions underlying the	with the Model: The provided	the study's objectives and the	
	dormitory buildings with different	dormitory buildings is detailed	multi-zone models. However, it is	excerpts do not include specific	capabilities of the multi-zone	
	ventilation systems. However, the	and appears appropriate for the	mentioned that the multi-zone	formulas associated with the	models as described. The	
	description lacks specific details	study's objectives. The models	modeling method is widely	multi-zone models. While the	conclusions drawn by the	
	about the demographic	were created based on floor	accepted for predictions of air	methodology and the process of	authors, emphasizing the	
	characteristics of the participants	plans, mechanical schedules,	infiltration rates, ventilation, and	model calibration using CO2	importance of ventilation rates in	
	(e.g., age, gender, health status),	ventilation networks, and system	contaminant concentrations,	concentrations are described,	ARI transmission and the utility	
	which could influence the	test reports, incorporating	assuming well-mixed air is	the actual mathematical or	of multi-zone modeling in	
	generalizability of the findings.	building geometry, air	applicable. This suggests that an	computational formulas used to	assessing exposure risks, align	
	Understanding the population's	infiltration paths, and	assumption of well-mixed air	calculate ventilation rates, air	with the presented results,	
	demographic makeup is crucial for	mechanical ventilation system	within each zone might be	flow paths, or the simulation of	indicating consistency between	
	assessing the study's applicability to	paths. The HVB model included	inherent in the methodology, but	influenza spread are not detailed	the results and the authors'	
	broader or different groups.	229 zones, while the LVB model	a comprehensive list of all model	in the provided text.	conclusions.	
	The description of the interventions	had 529 zones, indicating a	assumptions is not provided in			
	is adequate in terms of the	comprehensive representation of	the cited text.			
	operational aspects (e.g., monitoring	the buildings' layouts and				
	CO2 levels, comparing buildings with	ventilation characteristics. This				
	different ventilation systems).	detailed setup suggests that the				
	However, the study could benefit	model description is both				
	from a more detailed explanation of	complete and appropriate for				
	how often and under what conditions	evaluating ventilation rates and				
	windows and doors were opened, as	the potential for cross-				
	well as any guidance provided to the	contamination of influenza A				
	residents regarding this intervention.	viruses in the dormitory				
	This information is vital for	buildings.				
	replicating the study and	0				
	understanding the feasibility and					
	effectiveness of such interventions in					
	real-world settings.					
	0					

Geng, 2023 The description lacl	ks detailed	The description of the model	The study does not explicitly	The study provides some	The results and conclusions	Low
information about t	the following:	used in the study is	detail all the assumptions	formulas related to the CFD	presented in the study appear to	
	0	comprehensive and appropriate	underlying the CFD model and	simulations, such as those	be consistent with the	
Population Specific	s: There is no	for the objectives outlined. The	the machine learning algorithm.	involving the renormalization	methodology and objectives. The	
explicit mention of	the diversity of	study employs Computational	While it mentions the use of	group k-ε model and the	study successfully optimizes the	
the population invo	lved, such as age.	Fluid Dynamics (CFD)	specific models for turbulent and	Boussinesq model for	design of air diffusers to achieve	
health status, or oth	her demographics	simulations alongside a machine	buoyant airflow, which implies	simulating airflow. However,	a downward uniform flow field,	
that could influence	e the study's	learning algorithm, specifically	certain standard assumptions in	the detailed mathematical	reducing the dispersion of	
applicability to real-	-world settings.	Support Vector Regression	fluid dynamics simulations, it does	formulations behind the	aerosol particles in indoor	
Understanding the	population is	optimized with Particle Swarm	not explicitly list these	machine learning algorithm,	environments.	
crucial for assessing	g the	Optimization (SVR-PSO), to	assumptions. Similarly, while the	specifically the SVR-PSO,		
intervention's effect	tiveness across	optimize the design of air	use of machine learning for	including how it integrates with		
different groups.		diffusers for minimizing aerosol	optimization is described, the	alabamatad While there is		
		environments. The CED	SVR-PSO algorithm's application	mention of the Gaussian kernel		
Intervention Details	s: While the study	simulations utilize the	to this problem are not detailed	function used in SVR and the		
outlines the use of a	a downward	renormalization group k-a mode	Therefore it can be concluded	optimization process of PSO		
uniform flow field a	and mentions the	for turbulent airflow and the	that not all assumptions of the	the complete set of formulas		
optimization of air of	diffuser design, it	Boussinesq model for buoyant	model are published or clearly	that underpin the entire		
does not provide de	etailed	airflow, which are validated	stated.	modeling process is not		
specifications of the	e air purification	models for indoor airflow		comprehensively published.		
device proposed. In	itormation on the	studies. The integration of CFD				
exact nature of the	machine learning	with machine learning (MLA)				
flow field is also mi	predicting the	for design optimization				
detailed description	sof these	represents a novel approach that				
interventions would	the beneficial for	effectively reduces				
replicability and for	assessing their	computational costs. Therefore,				
practical applicabilit	tv.	the model's description as a				
1 11	,	simulations and machine				
Environmental Var	ables. The study	learning for design optimization				
does not explicitly s	state if it	is both complete and				
accounted for vario	ous environmental	appropriate for the study's goals.				
variables that could	affect aerosol	TT T S				
dispersion, such as	room size, the					
presence of furnitur	re, or ventilation					
systems other than	the proposed					
device. These factor	rs are critical for					
evaluating the interv	vention's					
effectiveness in dive	erse settings.					

Vie 2023	Evaluation of Population and	The description of the model	The study acknowledges several	The study utilizes the Wells	The results and conclusions	Low
anc, 2023	Intervention Description	used in the study is	assumptions made in the	Riley model to assess the	presented in the study appear to	LUW
	The description of the population in	comprehensive and appropriate	modeling process. It mentions	infection risk referencing the	be consistent with the objectives	
	the study is somewhat limited as it	for the objectives outlined. The	that all of the walls were assumed	original proposal of the Wells-	but methodological limitations	
	focuses on a generic scenario	study simulates a common	to be adjabatic and that the study	Rilev equation for studying the	do not allow their generalization.	
	involving two people dining at a table	scenario in a restaurant with two	considered a steady state expired	airborne spread of diseases like	server and a chef generalization.	
	without specifying demographic	people dining at a table.	iet without accounting for factors	measles. However, the specific		
	details such as age, health status or	specifying the dimensions of the	such as air conditioning filtration	formulas associated with the		
	other factors that could influence	room and the table, as well as	performance, boiling, humidity	Wells-Riley model or how it was		
	susceptibility to infection. While this	the positioning of two thermal	evaporation of droplets and	adapted to assess the infection		
	generic approach allows for broader	breathing manikins to represent	particles, and radiation. While	risk in this particular study are		
	applicability of the findings, a more	an infected source and a	these assumptions are crucial for	not detailed in the provided		
	detailed description of the population	susceptible person. The study	simplifying the model, the authors	excerpts.		
	could enhance the understanding of	further details the computational	also caution that these	1		
	how specific groups might be	mesh used for displacement and	simplifications are limitations and			
	affected differently by the ventilation	mixing ventilation cases, with	that the results should be			
	strategies.	approximately 3.8 million and	interpreted with caution. This			
	_	3.5 million elements,	transparency in publishing the			
	The interventions evaluated namely	respectively, indicating a	model's assumptions allows			
	the displacement and mixing	thorough approach to resolving	readers to understand the scope			
	ventilation strategies, are adequately	the flow field. The use of CO2	and limitations of the findings.			
	described in terms of their relevance	as a tracer gas and the specific				
	to controlling airborne infection risks	conditions under which the				
	in restaurant settings.	ventilation strategies were				
		analyzed (e.g., air exchange rates	,			
	Overall, while the population	diffuser velocities) are also				
	description could benefit from more	specified. This level of detail				
	detail, the interventions (ventilation	supports the appropriateness of				
	strategies) are well-defined and	the model for evaluating the				
	evaluated in a manner that is likely to	effectiveness of different				
	yield practical recommendations for	ventilation strategies in reducing				
	improving ventilation design in	respiratory infectious disease				
	restaurants to prevent disease	transmission in a restaurant				
	transmission.	setting.				

71				The successful and successful at the		T area
Zhang, 2022	The description of the population in	The description of the model	while the study outlines the	The provided excerpts do not	The results, as indicated by the	LOW
	this study is somewhat implicit,	used in the study appears to be	experimental setup and scenarios,	mention specific formulas	detection of fluorescent	
	rocusing on a simulated environment	complete and appropriate for	it does not explicitly detail all the	associated with the model used	nicrospheres in various locations	
	rather than a specific demographic	the objectives of the study. The	assumptions underlying the	for aerosol transmission. The	and under different scenarios,	
	group. The population in this	model incorporates various	model. For instance, the	study focuses on the	suggest that aerosol transmission	
	context refers to the hypothetical	scenarios of aerosol	assumptions regarding the	experimental setup, sample	is a concern in the studied	
	occupants of a quarantine hotel room	transmission, including	behavior of aerosols in different	collection, and the detection of	quarantine hotel setting,	
	where the aerosol transmission	simulated respiration and the	ventilation conditions or the	fluorescent microspheres in	especially considering the	
	experiments were conducted. While	influence of building ventilation	specific characteristics of the	various scenarios. While the	ventilation systems and human	
	the study does not describe these	systems such as fan coil units	fluorescent microspheres as	methodology for monitoring	activities. The findings regarding	
	individuals directly, it is understood	and fresh air conditioning	surrogates for viral particles are	aerosol concentration and the	the positive detection of	
	that the findings are meant to apply	systems. The study also	not fully detailed. However, the	collection of samples is	microspheres in different rooms	
	broadly to individuals staying in	considers the behavior of	study does imply assumptions	described, the absence of	and the potential for vertical	
	similar quarantine facilities.	occupants, such as opening	related to aerosol behavior in	explicit formulas or	transmission through bathroom	
		doors to throw away garbage or	ventilation systems and the	mathematical models for	and pipeline systems support the	
	The description of the interventions	receive food, which could affect	impact of human activities on	aerosol dispersion or	study's concerns about aerosol	
	is adequate in the context of the	aerosol dispersion. The inclusion	aerosol spread.	transmission analysis is noted.	transmission risks. These results	
	study's objectives. The focus is on	of different room scenarios and		This could be a limitation if the	seem consistent with the study's	
	assessing the role of building	the detailed setup for aerosol		study aims to provide a	objectives.	
	ventilation and air conditioning	detection through fluorescent		quantitative analysis of aerosol		
	systems in mitigating the risk of	microspheres provide a		transmission risks.		
	aerosol transmission which is a	comprehensive framework for				
	critical aspect of public health	understanding aerosol				
	measures in quarantine facilities	transmission in a quarantine				
	However, the study could benefit	hotel setting.				
	from a more detailed description of	5				
	the specific features and operational					
	settings of the ventilation systems					
	evaluated as well as any sepitation					
	evaluated, as well as any sanitation					
	these systems. This additional detail					
	mend provide a clearer					
	would provide a clearer					
	not on the interventions					
	potential effectiveness and					
	applicability in real-world settings.					

Ine description of the population and the interventions evaluated in the interventions evaluated in the used, which integrates CityRPI study appears to be adequately detailed for the study's scope. The population, in this case, is implicitly defined as individuals occupying Ine description of the model and the interventions underlying the integrates CityRPI and CityBEM, is adequately detailed for understanding its population, in this case, is implicitly defined as individuals occupying Ine description of the model and the interventions underlying the integrates CityRPI and CityBEM, is adequately detailed for understanding its population, in this case, is implicitly defined as individuals occupying Ine description of the model are not explicitly detailed in include specific formulas used the provided excerpts. While the interventions the use of presented in the study appear to be consistent with the objectives, archetype buildings based on archetype buildings based on calculations performed by these Inte description of the model are not explicitly detailed in include specific formulas used in the study appear to be consistent with the objectives, but methodological limitations approach and the types of cityBEM is adequated.	Low
and the interventions evaluated in the used, which integrates CityRP1index are not explicitly detailed in include specific formula usedpresented in the study appear tostudy appears to be adequatelyand CityBEM, is adequatelythe provided excerpts. While thein the CityRPI or CityBEMbe consistent with the objectives,detailed for the study's scope. Thedetailed for understanding itsmethodology mentions the use ofmodels. While the generalbut methodological limitationspopulation, in this case, is implicitlypurpose and functionality.cityRPI calculates the airbornepublicly available data, standards, calculations performed by thesedo not allow their generalization.	
detailed for the study's scope. The detailed for understanding its population, in this case, is implicitly defined as individuals occupying CityRPI calculates the airborne publicly available data, standards, calculations performed by these detailed by the consistent with the objectives, and the objectives	
population, in this case, is implicitly purpose and functionality. defined as individuals occupying CityRPI calculates the airborne publicly available data, standards, calculations performed by these	
defined as individuals occupying CityRPI calculates the airborne publicly available data, standards, calculations performed by these	
defined as individuals occupying Cityre reactuates the another publicly available data, standards, calculations performed by these	
various types of buildings (as	
classified by the building archetype) buildings while CityBEM regarding occupancy human	
during the COVID-19 pandemic assesses the impact of different behavior or compliance with risk heating/cooling loads and	
While the study does not specify strategies on buildings' neek mitigation strategies are not lengray consumption) the actual	
demographic details of the energy demand. The discussed The reliance on mathematical formulas or	
population such specificity may not methodology section provides a larchetyne buildings implies algorithms are not presented.	
be necessary eiven the focus on schematic of the CityRPI model assumptions about uniformity in	
indoor environments rather than and mentions its integration building types and their usage, but	
individual characteristics. with CityBEM for a the exact nature of these	
comprehensive analysis of assumptions is not fully disclosed.	
The interventions evoluted are well infection risk and energy	
described and relayant to the study consumption. However, the	
aim of improving indoor air quality detailed mechanics of CityBEM,	
to reduce COVID-19 transition such as the transient heat	
The six mitigation measures (wearing balance equations and the	
face masks reducing occupancy modeling of the HVAC system,	
improving ventilation etc.) cover a are not included in the main text	
broad range of strategies from but are available in the	
individual actions to systemic supplementary material. This	
building modifications. This approach is appropriate given	
comprehensive evaluation allows for the complexity of the models	
a nuanced understanding of each and the need to keep the main	
intervention's effectiveness and its text concise.	
implications for energy consumption.	
However, the study could benefit	
from a more detailed description of	
how these interventions are	
implemented within the different	
building archetypes and any	
assumptions made about compliance	
and usage patterns. Additionally.	
considering the variability in building	
types and usage.	

Banholzer,	The interventions evaluated, namely	The description of the models	The assumptions underlying the	The authors published key	The results and conclusions	Low
2023	the use of air cleaners to reduce	used in the study appears to be	models are not explicitly detailed	formulas associated with their	presented in the study appear to	
	respiratory infections, are mentioned	complete and appropriate for	in the provided excerpts. While	models. For instance, they	be consistent with the objectives,	
	in a general sense without detailing	the objectives of the study. The	the statistical approaches and the	provided the formula used to	but methodological limitations	
	the technology or models of air	authors employed Bayesian log-	use of Bayesian models suggest	estimate the number of new	do not allow their generalization.	
	cleaners used, their placement within	linear regression models to	certain underlying assumptions	infections in relation to the		
	the school environments, or the	estimate the reduction in particle	e (e.g., prior distributions,	presence of air cleaners,		
	metrics used to assess air quality	concentrations with air cleaners,	likelihood functions), specific	incorporating variables such as		
	improvements and reductions in	adjusting for observed	assumptions related to the	the number of infections in the		
	infection rates.	confounders. For estimating the	models' application to the study	previous week, the cumulative		
	For a comprehensive assessment of	relative risk of infection, they	data (such as the distribution of	number of infections, and the		
	the study's methodology and its	used a Bayesian latent variable	the data, independence of	effect of air cleaners adjusted		
	applicability to broader contexts, it	regression model, modeling the	observations, or linearity of	for class-specific effects and		
	would be essential to have detailed	number of new respiratory cases	relationships) are not directly	other factors. This indicates that	t	
	information on how the study was	with a Negative Binomial	mentioned.	they have published critical		
	designed and executed, including the	distribution. Additionally, they		formulas associated with their		
	characteristics of the participants and	utilized a Bayesian Negative		models, aiding in the		
	the operational specifics of the	Binomial regression model to		transparency and reproducibility	7	
	intervention. This information is	estimate the reduction in the		of their findings.		
	crucial for understanding the study's	daily number of coughs with air				
	relevance, replicability, and the	cleaners. These models are				
	generalizability of its findings.	suitable for analyzing count data				
	Without these details, readers cannot	and accommodating				
	fully assess the validity of the study's	overdispersion, which is				
	conclusions or the potential impact	common in epidemiological				
	of air cleaners in similar settings.	data, thus indicating that the				
		model descriptions are both				
		complete and appropriate for				
		the study's aims.				
	I I			1		

	and the interventions evaluated in the study appears to be adequately detailed for the study's objectives. However, some specifics about the population, such as the number of classrooms, the average number of students per classroom, and the age group of the students, were not explicitly mentioned. These details could provide additional context to understand the applicability and scalability of the findings. The interventions evaluated, including the comparison between cross-ventilation and single-sided ventilation, the use of masks, and the analysis of exposure times, are well- described and relevant to the study's aim of preventing COVID-19 transmission in school settings. The inclusion of power consumption analysis adds value by addressing the practical implications of implementing the recommended ventilation strategies. Overall, while the description of the interventions is comprehensive and directly tied to the study's objectives, a more detailed description of the population could enhance the understanding of the study's applicability and generalizability.	based on the Wells-Riley equation, which is a recognized method for evaluating the airborne infection risk. This model incorporates the concept of quantum to implicitly consider various factors such as infectivity, infectious source strength, and the biological decay of pathogens. The description of the model appears to be complete and appropriate for the study's objectives, given the Wells-Riley equation's established use in assessing airborne transmission risks.	not explicitly list all the assumptions of the Wells-Riley model, the nature of the model itself implies certain assumptions, such as a well-mixed room and a constant rate of quanta generation. However, without explicit mention in the provided excerpts, it's unclear if all assumptions specific to their application of the model (e.g., mask filtration efficiency, room occupancy) were fully disclosed.	include the specific formula of the Wells-Riley equation as applied in their study. The Wells-Riley equation is mentioned as the foundation of their infection risk evaluation, but the actual formula, including any modifications or parameters specific to their study (e.g., adjustments for mask use, ventilation rates), is not provided in the excerpts.	presented in the study appear to be consistent with the objectives, but methodological limitations do not allow their generalization. The consistency and validity of the results and conclusions would ultimately depend on how accurately and transparently the model was applied, including any study-specific modifications and the robustness of the data collected .	
--	--	---	---	--	---	--

Faulkner 202	3 The description of the population	The description of the model	The assumptions underlying the	The excernts provide some	The results and conclusions	Low
1 autkiici, 202	and the interventions to be evaluated	used in the study is	model are not explicitly detailed in	formulas associated with the	presented in the study oppear to	LOW
	in the study appears to be adequately	comprehensive and appropriate	the provided excerpte. While the	model particularly recording the	be consistent with the objectives	
	detailed for the purpose of the	for the objectives outlined. The	methodology socion describes	model, particularly regarding the	but methodological limitations	
	detailed for the purpose of the	noi the objectives outlined. The	the components of the model and	filters described by the equation	do not allow their concerlization	
	is the components of a modium sized	model integrates multiple	its application aposition	for administra vine	do not allow their generalization.	
	is the occupants of a medium-sized	components, including a	its application, specific	for calculating virus		
	office building, which is a relevant	multizone airflow model, a	assumptions regarding the HVAC	concentration exiting the filter		
	and practical choice given the	variable Air volume (VAV)	system's operational parameters,	based on filter removal		
	widespread concern about indoor air	system model, a control system,	occupancy patterns, or virus	efficiency. However, the		
	quality in workplace environments	and weather conditions, to	transmission dynamics are not	descriptions do not		
	during the COVID-19 pandemic.	simulate the impact of HVAC	fully disclosed. For a thorough	comprehensively cover all		
	The choice of a building in a cold	operation strategies on virus	evaluation, assumptions such as	formulas or mathematical		
	and dry climate adds specificity to the	transmission and energy	the efficiency of the hot water	relationships employed within		
	study, as these environmental	consumption in office buildings.	system, the efficiency and	the model, such as those related		
	conditions can significantly affect	The inclusion of virus	pressure drop characteristics of	to virus generation, decay, or		
	HVAC performance and energy	generation, decay, and removal	HVAC filters, and the generation	the specific control algorithms		
	consumption.	by HVAC filters within the	and decay rates of the virus are	for the HVAC system		
	However, the paper could enhance	model is particularly relevant for	crucial.	components. While the mention		
	its methodology section by providing	assessing strategies to mitigate		of the filter efficiency formula is		
	more detailed information about the	airborne virus transmission,		valuable, a more detailed		
	building's occupancy patterns, such	such as SARS-CoV-2.		exposition of the mathematical		
	as the number of occupants, their			underpinnings of the model		
	distribution within the building, and			would enhance the		
	their activity levels. These factors can			understanding of its operation		
	significantly influence the generation			and capabilities.		
	and concentration of airborne					
	viruses.					

r	T	I			1	
Wang, 2022	The description of the population	[The methodology section	The study acknowledges	The provided excerpts do not	The study's results regarding	Low
	and the interventions evaluated in the	provides a detailed description	uncertainties associated with	include specific formulas	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	
	study appears to be adequately	of the field study process,	modelling assumptions, indicating	associated with a model for	microbiological findings, such as	
	detailed for the study's objectives.	including CO2 monitoring and	that there are underlying	evaluating ventilation	the presence of bacteria and	
	However, the description could be	microbiological data collection	assumptions in their analysis or	effectiveness or the risk of	SARS-CoV-2 virus in air samples,	
	enhanced by providing more detailed	at live events in theatre	interpretation of data. However,	SARS-CoV-2 transmission.	are used to discuss the	
	information about the specific	auditoria. The study utilized	specific assumptions related to a	While the methodology for data	effectiveness of ventilation in	
	characteristics of the theatres (e.g.,	non-dispersive infrared (NDIR)	model are not detailed in the	collection and the criteria for	theatre settings and the potential	
	size, typical occupancy levels, types	sensors for CO2 measurement	provided text. For example, it is	indoor air quality (IAQ)	risk of disease transmission. The	
	of events hosted) and the exact	and considered variables such as	mentioned that any increase in	classification are described, the	acknowledgment of limitations	
	nature of the ventilation systems in	occupancy, event management,	CO2 concentration above	absence of explicit formulas or a	and the suggestion for further	
	place (e.g., mechanical vs. natural	and performance times.	expected ambient levels was	detailed analytical model in the	work indicate a level of	
	ventilation, air filtration capabilities).	However, it does not explicitly	attributed to human exhalation,	provided text suggests that the	consistency and caution in	
	Additionally, details on how	describe a predictive or	which is an assumption in	focus is on empirical	interpreting the findings. The	
	occupancy levels were varied or	analytical model for assessing	interpreting CO2 data. Still,	measurement and classification	results and conclusions presented	
	controlled during the study would	ventilation effectiveness or the	comprehensive assumptions that	rather than on a formula-based	in the study appear to be	
	offer deeper insights into the	risk of SARS-CoV-2	would be part of a detailed model	predictive model.	consistent with the objectives.	
	interventions' impact on air quality	transmission based on these	are not explicitly published.	r		
	and disease transmission risk.	measurements. Therefore while				
	In summary, while the study provides	the methodology for data				
	a solid foundation for understanding	collection is well-described the				
	the role of ventilation in mitigating	description of a specific model				
	COVID 19 transmission risk in	for analysis if used beyond				
	theatres a more detailed description	direct measurement				
	of the population characteristics and	interpretation is not detailed				
	the interventions evaluated would	interpretation, is not detailed.				
	for the national standard would					
	i 1 i 1					
	applicability and relevance.					

Vouriot, 2021	The study's population is adequately described in terms of the setting (school classrooms) and the geographical location (England). However, the description lacks specific details about the demographics of the students and staff within these classrooms, such as age ranges, which could influence the generalizability of the findings. Understanding the population's	The model used for assessing airborne infection risk in school classrooms is based on the Wells-Riley approach, which is a well-established method for estimating the probability of infection from airborne pathogens. The study specifically focuses on determining appropriate quanta generation rates for SARS-CoV-2 in school	The study acknowledges the inherent uncertainties in using CO2 measurements to infer the risk of airborne infection, such as the choice of sensor location and the sensor itself. It also discusses the uncertainties introduced by the choice of quanta generation rate, which is a critical factor in the Wells-Riley approach. However, while the study	The study does not explicitly detail the formulas associated with the Wells-Riley model or the specific calculations used to estimate the risk of airborne infection based on CO2 levels and quanta generation rates within the provided citations. While it discusses the selection of a quanta generation rate and its implications, the absence of	The results highlight significant seasonal variations in airborne infection risk due to changes in ventilation rates, with January being nearly twice as risky as July. These findings are consistent with the study's focus on ventilation and CO2 monitoring as indicators of airborne infection risk. The study concludes that the methodology	Low
	Interventions Evaluation The study implicitly evaluates an intervention by assessing the impact of ventilation on the risk of airborne infection. However, it does not explicitly describe any specific interventions implemented to improve ventilation or reduce infection risk, such as the introduction of air purifiers, increased outdoor air exchange, or changes in classroom occupancy. A more detailed description of evaluated interventions, if any were specifically tested or recommended based on the CO2 monitoring, would enhance the understanding of actionable measures that schools can take to mitigate airborne infection risks.	with disease, individuals, and activity levels. The description of the model, including its application to CO2 monitoring for estimating the number of secondary infections, is adequately detailed, making it appropriate for the study's objectives. The methodology's adaptability to various airborne diseases further supports its appropriateness .	assumptions explicitly. For instance, assumptions related to the uniformity of aerosol distribution, or the impact of mask-wearing and other mitigation measures are not detailed.	the model's application and reproducibility.	a wide range of airborne diseases	

T. 2022			· · · · · · · · ·		TT 1, 1 1	T
vita, 2023	I ne description of the population	I ne description of the model	I ne study outlines several	I ne text does not provide	I ne results and conclusions	Low
	and the interventions evaluated in the	used in the study is	assumptions, including the use of	specific formulas associated	presented in the study appear to	
	study appears to be adequately	comprehensive and appropriate	mannequins to represent	with the model directly within	be consistent with the objectives,	
	detailed for the purpose of assessing	for the objectives outlined. The	occupants, which simplifies	the provided excerpts. While it	but methodological limitations	
	airborne infection risk. The use of	methodology combines	human features while maintaining	discusses the methodology and	do not allow their generalization.	
	mannequins to represent occupants	Dynamic Thermal Modelling	the same surface area to mimic	the factors considered in the		
	provides a realistic simulation of	(DTM) and Computational	seated and standing positions.	model, such as CO2 levels,		
	human heat emissions, which is a	Fluid Dynamics (CFD) to assess	However, while the methodology	occupancy profiles, and heat		
	critical factor in modeling airflow and	airborne infection risk in	section discusses the integration	gains, and proposes an hourly		
	pathogen dispersion. However, the	buildings. The DTM model is	of DTM and CFD models and	airborne infection rate (HAI) as		
	study does not explicitly detail the	detailed with thermal zones and	the rationale behind using	a parameter, the actual		
	characteristics of the population (e.g.,	considers seasonal, daily, and	mannequins, it does not explicitly	mathematical formulas used to		
	number of occupants, their activities)	hourly variations in weather	list all assumptions related to	calculate airborne infection risk		
	beyond the use of mannequins.	conditions, which inform the	model parameters, such as viral	or to normalize viral material		
	Understanding the specific behaviors	boundary conditions used in the	load, transmission rates, or	concentration to a human		
	and density of occupants could	CFD model. The CFD model	specific behaviors of occupants	infectious dose are not explicitly		
	further refine risk assessments.	incorporates detailed building	that could affect airborne	mentioned.		
		geometry, surface temperatures	infection risk. The assumptions			
	The interventions evaluated such as	from the DTM model, and	regarding SARS-CoV-2 emissions			
	changes in ventilation rates and	preliminary characteristics of the	and its airborne transport are			
	window opening are relevant and	ventilation system. This dual-	mentioned to be based on			
	practical measures for reducing	model approach is suitable for	uncertainties and broad scientific			
	airborne infection risk. The study's	investigating the performance of	debate, indicating that while some			
	approach to assessing the impact of	ventilation systems concerning	assumptions are published, the			
	approach to assessing the impact of	airborne infection risk,	full extent of assumptions,			
	consitivity studios allows for a	leveraging the strengths of both	especially those related to viral			
	sensitivity studies allows for a	DTM and CFD to overcome	parameters, may not be fully			
	different strategies can affect indeen	their individual limitations.	disclosed.			
	air quality and infaction risk					
	Li quanty and infection risk.					
	However, the description could be					
	ennanced by providing more details					
	on the range of interventions					
	considered and the criteria for their					
	selection.					

Zhuang, 2022	The description of the population	The description of the	Assumptions of the Model: While	The study provides some	The results and conclusions	Low
0.	(building occupants) and the	autoencoder Bayesian Long	the study mentions considering	formulas related to performance	presented in the study appear to	
	interventions (ventilation adjustments	Short-term Memory (ABLSTM)	model misspecification, epistemic	metrics such as RMSE, MAPE,	be consistent with the objectives,	
	based on occupancy predictions) is	model used for probabilistic	uncertainty, and aleatoric	CVRMSE, χ-accuracy, and	but methodological limitations	
	adequately outlined in the context of	occupancy prediction is	uncertainty, it does not explicitly	PICP. These metrics are	do not allow their generalization.	
	the study's objectives. However, the	complete and appropriate. The	list all the assumptions underlying	essential for evaluating the		
	summary does not provide detailed	methodology section outlines	the ABLSTM model.	model's predictive performance		
	demographic information about the	the model's purpose, its basis on	Understanding these assumptions	and its uncertainty accuracy.		
	occupants or specific characteristics	historical occupancy data, plug	is critical for evaluating the	However, the specific formulas		
	of the buildings (e.g., size, layout,	loads, lighting loads, and	model's applicability and	that define the ABLSTM		
	type of ventilation systems) which	calendar information, and its	limitations. For a comprehensive	model's architecture, its		
	could influence the model's	application in predicting	evaluation, the publication would	Bayesian framework, or how it		
	applicability and generalizability.	occupant numbers for	benefit from a detailed discussion	processes input features for		
	The interventions, centered on	optimizing ventilation in	of all assumptions made during	occupancy prediction are not		
	optimizing ventilation for energy	buildings. The ABLSTM model	the model development and	detailed in the provided		
	efficiency and infection control, are	incorporates a Bayesian	application phases.	summary. For a thorough		
	well-defined. The study clearly	framework to account for		technical understanding and		
	describes how the ABLSTM model's	uncertainties in predictions,		reproducibility, these model-		
	predictions can inform real-time	which is crucial for making risk-		specific formulas are crucial.		
	ventilation control decisions,	aware decisions in ventilation				
	highlighting the model's utility in	control under both normal and				
	both pandemic and non-pandemic	pandemic scenarios. The				
	conditions. The decision-making	comparison with a conventional				
	schemes for ventilation adjustments	LSTM model as a baseline				
	based on the model's predictions are	demonstrates the improvement				
	a crucial intervention for reducing	and suitability of the ABLSTM				
	infection risk and energy	model for the study's objectives.				
	consumption.					

Dai, 2023	The description of the population	The description of the model	While the study provides detailed	The study does mention specific	The results and conclusions	Low
	and the interventions evaluated in the	appears to be both complete and	information on the methodology	formulas associated with the	presented by the authors appear	
	study appears to be somewhat limited	appropriate for the study's	and validation of the CFD model,	model, such as the governing	to be consistent with the	
	based on the provided excerpts.	objectives. The authors utilized	there is a lack of explicit mention	equations in RANS models for	objectives and methodology of	
	While the study clearly outlines the	Computational Fluid Dynamics	of all the assumptions underlying	incompressible Newtonian	the study. The findings highlight	
	methodology used to simulate and	(CFD) to simulate airflow	the model in the provided	fluids and the equation used for	how different wind directions	
	analyze the dispersion of pollutants	patterns and pollutant	excerpts. CFD models typically	grid sensitivity analysis.	affect pollutant re-entry ratios	
	and the impact of various wind	dispersions in a dormitory	involve assumptions related to	Additionally, the Wells-Riley	and infection risks in the	
	directions on this process, there is	complex, including a quarantine	fluid properties, boundary	model used to assess the level	dormitory complex, with specific	
	less detail on the specific population	area and surrounding buildings.	conditions, and turbulence	of infection risk is mentioned,	scenarios leading to significantly	
	characteristics (e.g., number of	The study employed ANSYS	modeling, among others.	which is crucial for linking the	higher risks. The study's	
	occupants, their activities, or	2020 R2 software and the finite	Although the study mentions the	CFD results to potential health	conclusions regarding the impact	
	occupancy patterns within the	volume method for simulations,	use of RANS models for	outcomes. However, not all	of wind direction on ventilation	
	dormitory complex) and the nature	with the SIMPLEC algorithm	incompressible Newtonian fluids,	equations and formulas used in	effectiveness and infection risk	
	of the interventions being evaluated	for pressure-velocity coupling	a comprehensive list of	the analysis are detailed, though	are supported by the CFD	
	(if any specific interventions beyond	and second-order precision	assumptions is not explicitly	key equations related to the	simulations and risk assessment	
	the simulation of natural ventilation	discrete schemes for convection,	provided.	study's objectives are	models employed. The	
	and its effects were considered).	diffusion term, and pressure		mentioned.	consistency between the	
		difference method. The			methodology, results, and	
	For a comprehensive evaluation of	validation of the CFD model			conclusions suggests a logical and	
	the study's relevance to real-world	against experimental data further			coherent study.	
	applications, especially in the context	supports the appropriateness of				
	of preventing the spread of infectious	the model. Therefore, the				
	diseases in compact living	description of the model is				
	environments like dormitories, a	comprehensive and suitable for				
	more detailed description of the	investigating ventilation and				
	population (e.g., demographic	pollutant dispersion in compact				
	characteristics, density) and any	living environments.				
	specific interventions or preventive					
	measures being evaluated (e.g.,					
	modifications to building design,					
	changes in ventilation systems) would					
	be beneficial. This would enhance the					
	applicability of the study's findings to					
	developing effective strategies.					

Lin 2022	The description of the population	The description of the model	While the study provides a	The study does publish	The results and conclusions	Low
LIU, 2022	and the interventions evaluated in the	used in the study is	detailed description of the model	formulas associated with the	presented by the authors appear	LUW
	study appears to be adequately	comprehensive and appropriate	used it does not explicitly list all	model particularly those related	to be consistent with the	
	detailed for the purpose of the	for the objectives set forth. The	the assumptions underlying the	to the assessment of COVID	methodology and the data	
	research The population in this case	atudy amploys the realizable k	model in the provided excernts	10 infection risk using the	abtained from both experimental	
	is implied to be passangers souted	study employs the realizable K-e	However, the choice of the	Wells Pilov equation and the	measurements and simulations	
	is implied to be passengers seated	model for sinuating annows	nowever, the choice of the	as a substance of partials	ineasurements and simulations.	
	within a confinercial affiner cabin	within the enclosed spaces of	Fearzable K-e model and the	calculation of particle		
	mockup, which is a realistic	airliner cabins, which is proven	Lagrangian method for particle	concentration. These formulas		
	representation for evaluating	to be effective and economical	transport implicitly carries	are crucial for understanding		
	Ventilation systems in actual flight	Additional to the Learning	standard assumptions associated	now the model translates		
	conditions. The interventions	Additionally, the Lagrangian	with these models, such as	airflow and particle transport		
		method is used for simulating	assumptions regarding turbulence	simulations into assessments of		
	The use of two different ventilation	the transport of particles within	and particle behavior in airflow.	infection risk. This indicates		
	systems (DV and MV) to understand	the cabin mockup, which is		that key formulas integral to the		
	their impact on airflow, thermal	COVID 10 infection concerns		model's application and the		
	The impact of wearing masks by	COVID-19 infection among		study's objectives are indeed		
	The impact of wearing masks by	passengers. The choice of these		published.		
	passengers as a mitigation strategy to	models is based on their				
	reduce the spread of COVID-19.	established utility in similar				
	However, the study could have	contexts, indicating that the				
	provided more explicit details about	description of the model is both				
	the demographic characteristics of	complete and appropriate.				
	the population (e.g., age, nealth					
	status) if numan subjects were					
	if such share storistics were					
	if such characteristics were					
	L'adapte a diag the demonstrations.					
	Understanding the demographic					
	makeup is crucial as factors like age					
	and pre-existing health conditions					
	can influence an individual s					
	susceptibility to infection and					
	perception of thermal comfort.					

Kennedy, 2021	The description of the population	The description of the model	The authors have published key	While the text does not	The results and conclusions	Low
,,,	and the interventions evaluated has	used, FATE, is adequately	assumptions of the model,	explicitly detail the formulas	presented are consistent with the	
	limitations. The model's inputs, such	detailed for the purpose of	including the variability in viral	used within the FATE model, it	methodology and assumptions	
	as viral load, vary greatly between	quantifying airborne	load among individual emitters	does describe the model's	described. The FATE model's	
	individual emitters, and some key	transmission and infection of	and the unknown infectious dose	reliance on parameters such as	findings, such as the effectiveness	
	information about the pathogen, like	SARS-CoV-2 in both single-	of SARS-CoV-2. These	air changes per hour (ACH) and	of continuous purging of room	
	the infectious dose of SARS-CoV-2,	region and multi-region settings.	assumptions are critical as they	virus half-life, which are	atmosphere with outside air,	
	is not known. This variability and	The model's adaptability to	directly influence the model's	incorporated as linear droplet	wearing masks, and the use of	
	lack of specific data mean that the	represent different confinement	infection risk outputs, indicating	removal rate terms in the	HEPA filters in multi-room	
	infection risks reported are valid only	settings and ventilation networks	that the results are specific to the	governing equations. This	facilities, align with the expected	
	for the specific inputs assumed and	is highlighted, along with its	inputs assumed and should not be	description suggests an	outcomes based on the model's	
	should not be taken literally. The	ability to evaluate the	generalized without caution.	underlying mathematical	design and the described	
	analysis presented is narrowly	effectiveness of various	However, the description of	framework guiding the model's	interventions. The	
	focused on the potential risk of	mitigation measures such as	assumptions related to the	operation, but the absence of	acknowledgment of the model's	
	infection from a quasi-steady state	ventilation improvements, use	model's simplifications, such as	explicit formulas limits the	limitations and the call for future	
	virus aerosol generation through	of HEPA filters, and wearing	the neglect of sporadic aerosol	ability to fully evaluate the	research to expand the	
	breathing, with future research	masks. The model is	generation mechanisms like	model's mathematical	knowledge basis on virus aerosol	
	needed to expand the knowledge	appropriately detailed for the	coughing and sneezing, could be	underpinnings.	transmission further support the	
	basis on virus aerosol transmission	study's objectives.	considered a limitation.		consistency and credibility of the	
	and include sporadic aerosol				authors' conclusions.	
	generation mechanisms like coughing					
	and sneezing.					

Unidad de Evidencia y Deliberación para la toma de decisiones UNED

References

1. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, et al. Chapter 7: Systematic reviews of etiology and risk. En: JBI Manual for Evidence Synthesis [Internet]. JBI; 2020 [citado 24 de marzo de 2024]. (JBI). Disponible en: https://jbi-global-wiki.refined.site/space/MANUAL

2. Baumgarte S, Hartkopf F, Hölzer M, von Kleist M, Neitz S, Kriegel M, et al. Investigation of a Limited but Explosive COVID-19 Outbreak in a German Secondary School. Viruses. 4 de enero de 2022;14(1):87.

3. Gettings J, Czarnik M, Morris E, Haller E, Thompson-Paul AM, Rasberry C, et al. Mask Use and Ventilation Improvements to Reduce COVID-19 Incidence in Elementary Schools - Georgia, November 16-December 11, 2020. MMWR Morb Mortal Wkly Rep. 28 de mayo de 2021;70(21):779-84.

4. Granzin M, Richter S, Schrod J, Schubert N, Curtius J. Long-term filter efficiency of mobile air purifiers in schools. Aerosol Sci Technol. 1 de febrero de 2023;57(2):134-52.

5. Monge-Barrio A, Bes-Rastrollo M, Dorregaray-Oyaregui S, González-Martínez P, Martin-Calvo N, López-Hernández D, et al. Encouraging natural ventilation to improve indoor environmental conditions at schools. Case studies in the north of Spain before and during COVID. Energy Build. 1 de enero de 2022;254:111567.

6. Oginawati K, Nathanael RJ, Pasaribu US, Mukhaiyar U, Humam A, Ilmi NFF, et al. Analysis of the Effect and Role of Indoor Environmental Quality in the COVID-19 Transmission. Aerosol Air Qual Res. 2022;22(5):210339.

7. Pokora R, Kutschbach S, Weigl M, Braun D, Epple A, Lorenz E, et al. Investigation of superspreading COVID-19 outbreak events in meat and poultry processing plants in Germany: A cross-sectional study. PloS One. 2021;16(6):e0242456.

8. Wessendorf L, Richter E, Schulte B, Schmithausen RM, Exner M, Lehmann N, et al. Dynamics, outcomes and prerequisites of the first SARS-CoV-2 superspreading event in Germany in February 2020: a cross-sectional epidemiological study. BMJ Open. 1 de abril de 2022;12(4):e059809.

9. Linkins L. Critical Appraisal Process for Assessment of Public Health Measures for COVID-19 Cohort Studies. Hamilton, Canada; 2023.

10. Buonanno G, Ricolfi L, Morawska L, Stabile L. Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy's Marche region. Front Public Health. 2022;10:1087087.

11. Cheng VCC, Lung DC, Wong SC, Au AKW, Wang Q, Chen H, et al. Outbreak investigation of airborne transmission of Omicron (B.1.1.529) - SARS-CoV-2 variant of concern in a restaurant: Implication for enhancement of indoor air dilution. J Hazard Mater. 15 de mayo de 2022;430:128504.

12. Wang Y, Tian H, Zhang L, Zhang M, Guo D, Wu W, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob Health. mayo de 2020;5(5):e002794.

13. Miyake F, Odgerel CO, Mine Y, Kubo T, Ikaga T, Fujino Y. A Prospective Cohort Study of Bedroom Warming With a Heating System and Its Association With Common Infectious Diseases in Children During Winter in Japan. J Epidemiol. 5 de marzo de 2021;31(3):165-71.

14. Horve PF, Dietz LG, Bowles G, MacCrone G, Olsen-Martinez A, Northcutt D, et al. Longitudinal analysis of built environment and aerosol contamination associated with isolated COVID-19 positive individuals. Sci Rep. 5 de mayo de 2022;12(1):7395.

15. Nabirova D, Taubayeva R, Maratova A, Henderson A, Nassyrova S, Kalkanbayeva M, et al. Factors Associated with an Outbreak of COVID-19 in Oilfield Workers, Kazakhstan, 2020. Int J Environ Res Public Health. 10 de marzo de 2022;19(6):3291.

16. Yang F, Sun Y, Wang P, Weschler LB, Sundell J. Spread of respiratory infections in student dormitories in China. Sci Total Env. 2021;777:145983.

17. Falkenberg T, Wasser F, Zacharias N, Mutters N, Kistemann T. Effect of portable HEPA filters on COVID-19 period prevalence: an observational quasi-interventional study in German kindergartens. BMJ Open. 30 de julio de 2023;13(7):e072284.

18. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 28 de agosto de 2019;366:14898.

Myers NT, Laumbach RJ, Black KG, Ohman-Strickland P, Alimokhtari S, Legard A, et al. Portable air cleaners and residential exposure to SARS-CoV-2 aerosols: A real-world study. Indoor Air. 2022;32(4):e13029.
 Aganovic A, Cao G, Kurnitski J, Melikov A, Wargocki P. Zonal modeling of air distribution impact on the long-range airborne transmission risk of SARS-CoV-2. Appl Math Model. diciembre de 2022;112:800-21.

21. Aganovic A, Bi Y, Cao G, Kurnitski J, Wargocki P. Modeling the impact of indoor relative humidity on the infection risk of five respiratory airborne viruses. Sci Rep. 7 de julio de 2022;12(1):11481.

22. Aganovic A, Bi Y, Cao G, Drangsholt F, Kurnitski J, Wargocki P. Estimating the impact of indoor relative humidity on SARS-CoV-2 airborne transmission risk using a new modification of the Wells-Riley model. Build Environ. 1 de noviembre de 2021;205:108278.

23. Arpino F, Grossi G, Cortellessa G, Mikszewski A, Morawska L, Buonanno G, et al. Risk of SARS-CoV-2 in a car cabin assessed through 3D CFD simulations. Indoor Air. 2022;32(3):e13012.

24. Azimi P, Keshavarz Z, Cedeno Laurent JG, Allen JG. Estimating the nationwide transmission risk of measles in US schools and impacts of vaccination and supplemental infection control strategies. BMC Infect Dis. 11 de julio de 2020;20(1):497.

25. Barone G, Buonomano A, Forzano C, Giuzio GF, Palombo A. Energy, economic, and environmental impacts of enhanced ventilation strategies on railway coaches to reduce Covid-19 contagion risks. Energy Oxf Engl. 1 de octubre de 2022;256:124466.

26. Clements N, Arvelo I, Arnold P, Heredia NJ, Hodges UW, Deresinski S, et al. Informing Building Strategies to Reduce Infectious Aerosol Transmission Risk by Integrating DNA Aerosol Tracers with Quantitative Microbial Risk Assessment. Environ Sci Technol. 11 de abril de 2023;57(14):5771-81.

27. Corzo SF, Ramajo DE, Idelsohn SR. Study of ventilation and virus propagation in an urban bus induced by the HVAC and by opening of windows. Spec Issue Comput Model Simul Infect Dis. 1 de noviembre de 2022;401:115387.

28. Cotman ZJ, Bowden MJ, Richter BP, Phelps JH, Dibble CJ. Factors affecting aerosol SARS-CoV-2 transmission via HVAC systems; a modeling study. PLOS Comput Biol. 18 de octubre de 2021;17(10):e1009474.

29. Das D, Babik KR, Moynihan E, Ramachandran G. Experimental studies of particle removal and probability of COVID-19 infection in passenger railcars. J Occup Environ Hyg. 2 de enero de 2023;20(1):1-13.

30. Das D, Ramachandran G. Risk analysis of different transport vehicles in India during COVID-19 pandemic. Environ Res. 1 de agosto de 2021;199:111268.

31. Dong Y, Zhu L, Li S, Wollensak M. Optimal design of building openings to reduce the risk of indoor respiratory epidemic infections. Build Simul. 2022;15(5):871-84.

32. Farthing TS, Lanzas C. Assessing the efficacy of interventions to control indoor SARS-Cov-2 transmission: An agent-based modeling approach. Epidemics. diciembre de 2021;37:100524.

33. Faulkner CA, Castellini JE, Zuo W, Lorenzetti DM, Sohn MD. Investigation of HVAC operation strategies for office buildings during COVID-19 pandemic. Build Environ. 1 de enero de 2022;207:108519.
34. Feng Y, Zhang Y, Ding X, Fan Y, Ge J. Multi-scale risk assessment and mitigations comparison for COVID-19 in urban public transport: A combined field measurement and modeling approach. Build Environ. 15 de agosto de 2023;242:110489.

35. Foat TG, Higgins B, Abbs C, Maishman T, Coldrick S, Kelsey A, et al. Modeling the effect of temperature and relative humidity on exposure to SARS-CoV-2 in a mechanically ventilated room. Indoor Air. noviembre de 2022;32(11):e13146.

36. Foster A, Kinzel M. SARS-CoV-2 transmission in classroom settings: Effects of mitigation, age, and

Delta variant. Phys Fluids. 9 de noviembre de 2021;33(11):113311.

37. Gao CX, Li Y, Wei J, Cotton S, Hamilton M, Wang L, et al. Multi-route respiratory infection: When a transmission route may dominate. Sci Total Environ. 15 de enero de 2021;752:141856.

38. Ghoroghi A, Rezgui Y, Wallace R. Impact of ventilation and avoidance measures on SARS-CoV-2 risk of infection in public indoor environments. Sci Total Environ. 10 de septiembre de 2022;838(Pt 4):156518.

39. Guyot G, Sayah S, Guernouti S, Mélois A. Role of ventilation on the transmission of viruses in buildings, from a single zone to a multizone approach. Indoor Air. agosto de 2022;32(8):e13097.

40. Jones B, Sharpe P, Iddon C, Hathway EA, Noakes CJ, Fitzgerald S. Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air. Build Environ. 15 de marzo de 2021;191:107617.

41. Liu Z, Wu J, Yang G, Zhang X, Dai Z. A numerical study of COVID-19-laden droplets dispersion in aircraft cabin ventilation system. Heliyon. 1 de marzo de 2023;9(3):e13920.

42. Luo Q, Yang X, Hang J, Fan X, Luo Z, Gu Z, et al. Influence of natural ventilation design on the dispersion of pathogen-laden droplets in a coach bus. Sci Total Environ. 10 de agosto de 2023;885:163827.

43. Martinez I, Bruse JL, Florez-Tapia AM, Viles E, Olaizola IG. ArchABM: An agent-based simulator of human interaction with the built environment. CO2 and viral load analysis for indoor air quality. Build Environ. enero de 2022;207:108495.

44. Miller D, King MF, Nally J, Drodge JR, Reeves GI, Bate AM, et al. Modeling the factors that influence exposure to SARS-CoV-2 on a subway train carriage. Indoor Air. febrero de 2022;32(2):e12976.

45. Mizukoshi A, Okumura J, Azuma K. A COVID-19 cluster analysis in an office: Assessing the longrange aerosol and fomite transmissions with infection control measures. Risk Anal [Internet]. [citado 16 de marzo de 2024];n/a(n/a). Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/risa.14249

46. Mokhtari R, Jahangir MH. The effect of occupant distribution on energy consumption and COVID-19 infection in buildings: A case study of university building. Build Environ. marzo de 2021;190:107561.

47. Moritz S, Gottschick C, Horn J, Popp M, Langer S, Klee B, et al. The risk of indoor sports and culture events for the transmission of COVID-19. Nat Commun. 19 de agosto de 2021;12(1):5096.

48. Niu R ping, Chen X, Liu H. Analysis of the impact of a fresh air system on the indoor environment in office buildings. Sustain Cities Soc. 1 de agosto de 2022;83:103934.

49. O' Donovan A, O' Sullivan PD. The impact of retrofitted ventilation approaches on long-range airborne infection risk for lecture room environments: design stage methodology and application. J Build Eng. 1 de junio de 2023;68:106044.

50. Osterman E, Dovjak M, Vaupotič J, Verbajs T, Mlakar U, Zavrl E, et al. Analysis of Educational Building's Ventilation Suitability to Prevent the Spread of Coronavirus (SARS-CoV-2). J Mech Eng Stroj Vestn. abril de 2022;68(4):233-9.

51. Pang Z, Lu X, O'Neill Z. Quantification of how mechanical ventilation influences the airborne infection risk of COVID-19 and HVAC energy consumption in office buildings. Build Simul. 1 de mayo de 2023;16(5):713-32.

52. Pease LF, Wang N, Salsbury TI, Underhill RM, Flaherty JE, Vlachokostas A, et al. Investigation of potential aerosol transmission and infectivity of SARS-CoV-2 through central ventilation systems. Build Environ. 15 de junio de 2021;197:107633.

53. Ren C, Chen H, Wang J, Feng Z, Cao SJ. Ventilation impacts on infection risk mitigation, improvement of environmental quality and energy efficiency for subway carriages. Build Environ. 15 de agosto de 2022;222:109358.

54. Ren C, Cao SJ, Haghighat F. A practical approach for preventing dispersion of infection disease in naturally ventilated room. J Build Eng. 1 de mayo de 2022;48:103921.

55. Riediker M, Tsai DH. Estimation of Viral Aerosol Emissions From Simulated Individuals With
Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Netw Open. 1 de julio de 2020;3(7):e2013807.
56. Sarhan AAR, Naser P, Naser J. Numerical study of when and who will get infected by coronavirus in

passenger car. Environ Sci Pollut Res. 1 de agosto de 2022;29(38):57232-47.

57. Sha H, Zhang X, Qi D. Optimal control of high-rise building mechanical ventilation system for achieving low risk of COVID-19 transmission and ventilative cooling. Sustain Cities Soc. 1 de noviembre de 2021;74:103256.

58. Shen J, Kong M, Dong B, Birnkrant MJ, Zhang J. A systematic approach to estimating the effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2. Build Environ. agosto de 2021;200:107926.

59. Shinohara N, Sakaguchi J, Kim H, Kagi N, Tatsu K, Mano H, et al. Survey of air exchange rates and evaluation of airborne infection risk of COVID-19 on commuter trains. Environ Int. diciembre de 2021;157:106774.

60. Schibuola L, Tambani C. High energy efficiency ventilation to limit COVID-19 contagion in school environments. Energy Build. 1 de junio de 2021;240:110882.

61. Srivastava S, Zhao X, Manay A, Chen Q. Effective ventilation and air disinfection system for reducing coronavirus disease 2019 (COVID-19) infection risk in office buildings. Sustain Cities Soc. 1 de diciembre de 2021;75:103408.

62. Stabile L, Pacitto A, Mikszewski A, Morawska L, Buonanno G. Ventilation procedures to minimize the airborne transmission of viruses in classrooms. Build Environ. 1 de septiembre de 2021;202:108042.

63. Takahashi S, Kitazawa M, Yoshikawa A. School Virus Infection Simulator for customizing school schedules during COVID-19. Inform Med Unlocked. 2022;33:101084.

64. Tognon G, Marigo M, De Carli M, Zarrella A. Mechanical, natural and hybrid ventilation systems in different building types: Energy and indoor air quality analysis. J Build Eng. 1 de octubre de 2023;76:107060.
65. Wang J, Huang J, Feng Z, Cao SJ, Haghighat F. Occupant-density-detection based energy efficient

ventilation system: Prevention of infection transmission. Energy Build. 1 de junio de 2021;240:110883.

66. Xu Y, Chen J, Cai J, Li S, He Q. Simulation-based trade-off modeling for indoor infection risk of airborne diseases, energy consumption, and thermal comfort. J Build Eng. 1 de octubre de 2023;76:107137.

67. XU Y, CAI J, LI S, HE Q, ZHU S. Airborne infection risks of SARS-CoV-2 in U.S. schools and impacts of different intervention strategies. Sustain Cities Soc. 1 de noviembre de 2021;74:103188.

68. Xie Y, Ding Z, Ma J, Zheng X, Liu F, Ding Y, et al. The assessment of personal exposure in restaurants considering heat sources and ventilation strategies. Energy Built Environ [Internet]. 2 de junio de 2023; Disponible en: https://www.sciencedirect.com/science/article/pii/S2666123323000387

69. Yan S, Wang LL, Birnkrant MJ, Zhai J, Miller SL. Evaluating SARS-CoV-2 airborne quanta transmission and exposure risk in a mechanically ventilated multizone office building. Build Environ. 1 de julio de 2022;219:109184.

70. Yuce BE, Aganovic A, Nielsen PV, Wargocki P. Analysis of parameters influencing pathogen concentration in a room with displacement ventilation using computational fluid dynamics and Taguchi methods. J Build Eng. 1 de diciembre de 2023;80:108002.

71. Zafari Z, de Oliveira PM, Gkantonas S, Ezeh C, Muennig PA. The cost-effectiveness of standalone HEPA filtration units for the prevention of airborne SARS CoV-2 transmission. Cost Eff Resour Alloc. 12 de mayo de 2022;20(1):22.

72. Zafarnejad R, Griffin PM. Assessing school-based policy actions for COVID-19: An agent-based analysis of incremental infection risk. Comput Biol Med. 1 de julio de 2021;134:104518.

73. Zand MS, Spallina S, Ross A, Zandi K, Pawlowski A, Seplaki CL, et al. Ventilation during COVID-19 in a school for students with intellectual and developmental disabilities (IDD). MedRxiv Prepr Serv Health Sci. 20 de septiembre de 2023;2023.09.08.23295268.

74. Zheng K, Ortner P, Lim YW, Zhi TJ. Ventilation in worker dormitories and its impact on the spread of respiratory droplets. Sustain Cities Soc. 1 de diciembre de 2021;75:103327.